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Interaction with Gaze, Gesture and Speech in a
Flexibly Configurable Augmented Reality System

Zhimin Wang*, Haofei Wang*, Huangyue Yu, and Feng Lu†, Member, IEEE

Abstract—Multimodal interaction has become a recent re-
search focus since it offers better user experience in Augmented
Reality (AR) systems. However, most existing works only combine
two modalities at a time, e.g., gesture and speech. Multimodal in-
teractive system integrating gaze cue has rarely been investigated.
In this paper, we propose a multimodal interactive system that
integrates gaze, gesture and speech in a flexibly configurable AR
system. Our lightweight head-mounted device supports accurate
gaze tracking, hand gesture recognition and speech recognition
simultaneously. The system can be easily configured into various
modality combinations, which enable us to investigate the effects
of different interaction techniques. We evaluate the efficiency of
these modalities using two tasks: the lamp brightness adjustment
task and the cube manipulation task. We also collect subjective
feedback when using such systems. The experimental results
demonstrate that the Gaze+Gesture+Speech modality is superior
in terms of efficiency, and the Gesture+Speech modality is more
preferred by users. Our system opens the pathway towards a
multimodal interactive AR system that enables flexible configu-
ration.

Index Terms—multimodal interaction, augmented reality, gaze,
gesture, speech, human-computer interaction.

I. INTRODUCTION

Augmented Reality (AR) systems aim at providing immer-
sive experience via overlaying virtual content onto the real
environment. Prior researches have extensively explored using
different modalities to interact with the virtual content in AR,
such as hand gesture [1], [2], [3], [4], and speech [5], [6], [7].
Each modality has its own pros and cons. The hand gesture-
based system provides intuitive experience while it has to
handle the occlusion problem [8], and it is likely to cause
arm fatigue after long-time usage [3], [9]. The speech-based
system offers better controllability, however, it requires user
to remember and pronounce the verbal command correctly
[5]. It also increases user’s cognitive workload, especially for
complex tasks.

With the development of eye tracking technology, it is
possible to investigate the eye gaze behavior when using AR
systems [10], [11]. Visual system is vital for us since more
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Fig. 1. Left: Gaze-Gesture-Speech AR system (GGS-AR) system setup. Right:
the user is interacting with the objects using GGS-AR system.

than 80% of the information received by the brain is from
our eyes [12]. As the windows to the soul, eye contact cues
increase mutual trust, collaboration and understanding [13],
[14]. Eye gaze-based interaction also requires less physical
effort, and provides more natural experience than gesture
or speech [10], which is potentially an effective channel
in wearable HMD systems [15]. However, the gaze-based
system often suffers from the Midas Touch problem [16], [17],
where users unintentionally trigger a target with every glance.
The insufficient eye tracking accuracy also degrades the user
experience [10]. Therefore, using single modality can not bring
the user optimal experience.

Multimodal interactive systems seek to provide better us-
ability by taking advantage of each modality. These systems
usually combine two modalities at a time, i.e., Gesture+Speech
[18], [5], [6], Gesture+Gaze [10], [19], Gaze+Speech [20],
[21] and Gaze+Electroencephalography [22], [23]. Each
modality is assigned to an individual task, e.g., the user
selects an object using hand gesture and trigger an action
using speech command. The modality flexibility has become a
desired property of interaction systems, which meets various
user preferences [24]. However, there are few works using
three or more interaction modalities, and it is unclear yet
which types of combination could achieve better performance.
Exploring the diversity of modalities seeks not only to break
the restriction of limited modalities, but also provide an
intuitive and natural interaction to improve usability [25],
[26]. Therefore, it is necessary to investigate the efficiency
of different modality combinations.

Current AR systems viable for multimodal interaction can
be categorized into two types: the head-mounted display
(HMD) and the desktop setup [27], [28]. The HMDs, such
as Magic Leap [29] and Microsoft HoloLens [30], provide
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the user an immersive interaction experience. However, they
usually rely on complex computer vision-based registration
techniques to locate the real-world object [31], and the fail-
ure of localization may lead to degradation of interaction
researches. In addition, the fixed hardware configuration of
the above-mentioned devices cannot be easily adapted to the
various requirements in different studies, such as flexible
selection of different sensors and field of view (FoV). For
the desktop setup, researchers have found that there is no
significant difference in terms of usability as compared with
HMD, and the desktop setup makes it easier to study the
effectiveness of different interaction techniques [32], [33].
However, since the desktop setup lacks head tracking, the user
feels less immersed during the interaction [33].

In this paper, we propose a Gaze-Gesture-Speech AR sys-
tem (GGS-AR) to address the above-mentioned challenges,
the system is shown in Fig. 1. A portion of this work has
been introduced as an extended abstract [34], which only
demonstrates the concept of the proposed system with an
exemplary experiment. The GGS-AR system consists of four
parts: an eye tracking glasses with a scene camera, a hand
gesture recognizer, a microphone and an AR display. The
system supports accurate gaze tracking, hand gesture recogni-
tion and speech recognition. It can be flexibly configured into
single-modal, double-modal and triple-modal to investigate the
effects of different interaction modalities. The scene camera
detects the markers and tracks the user’s head, thus the user’s
sense of immersion is increased. The primary contributions
of this paper are: 1) We develop the GGS-AR system which
enables the users to interact with the AR objects using
gaze, gesture and speech. 2) We use the GGS-AR system to
investigate the efficiency of different interaction modalities by
quantitative performance measurements as well as subjective
feedback. 3) The experimental results demonstrate that the
Gaze+Gesture+Speech modality is more efficient in terms
of completion time and accuracy, and the user preferred
Gesture+Speech modality than other modalities.

II. RELATED WORK

In this section, we review the existing works on single-
modal interaction in AR, multimodal interaction in AR and
the AR devices.

A. Single-modal Interaction in AR

An extensive body of research in AR explores different
interaction modalities for interacting with the virtual objects.
The common modalities are hand gesture, speech and gaze.

Hand gesture: Hand gesture is one of the most intuitive in-
teraction techniques [35], [36]. Researches have been focused
on creating a user-defined gesture set for the selected tasks
[37], exploring bimanual and unimanual gesture for rotation
and scale operations [3], and developing glove-based sensors
for translation of the sign language [38].

Speech: Speech-based interaction enables the user to control
the device through verbal command [6], [7]. Previous studies
have found that voice command achieved comparable effi-
ciency as gesture input [5], and multimodal voice commands

are more robust to distance than embodied free-hand gestures
or handheld remotes [39].

Gaze: Eye gaze is faster than manual input and requires
less physical demand [11]. A few efforts have been made to
take the advantage of gaze interaction in AR systems. Recent
works have explored the gaze as input to select objects or
buttons [15], [40], [41], [42].

To summarize, single-modal interactions have been explored
in different applications while they have their own limitations
[43]. Specifically, users tend to feel fatigue during gesture-
based interaction [3], [9], [44], and the system performance
degrades when there exists occlusion [8]. For speech input, it
is difficult for the user to remember a large number of voice
commands [5], especially for complex interaction scenarios.
For gaze-based interaction, it usually suffers from insufficient
eye tracking accuracy [10] and the Midas Touch problem
[16]. Therefore, it is crucial to find an optimal strategy that
combines different interaction modalities to benefit from their
complementary natures.

B. Multimodal Interaction in AR

To tackle the limitations of single-modal interaction systems
and enrich user experience in AR, multimodal interaction has
become a recent research focus.

Gesture+Speech: The Gesture+Speech technique is widely
used in the AR systems [18], [2], [5], [6]. For instance, using
gesture to pinpoint a target and speech to take an action [2].
Lee et al. [5] found that integration of hand gesture and speech
provides more efficient and accurate control than gesture input
alone.

Gaze+Gesture: The Gaze+Gesture modality offers more
accurate interaction experience than using gaze-only input in
head-mounted AR system [10], it also outperforms the gaze-
only or gesture-only in the desktop setup [19]. Pfeuffer et al.
[42] used eye gaze to identify the objects and gesture for object
manipulation.

Gaze+Speech: The Gaze+Speech modality is only used
to perform simple operations on computer interfaces. Prior
research [20] incorporated gaze with voice commands to
manipulate objects in pictures of a back projection canvas.
Kaur et al. [21] explored the gaze and speech fusion for
moving objects on a computer screen.

In summary, most existing works only combine two
modalities at a time. It is unclear yet that which com-
bination is better. Here, we seek to fuse three modalities
(Gaze+Gesture+Speech) simultaneously in a single AR sys-
tem, and evaluate the effectiveness of different configurations:
two single-modal techniques (Gesture and Gaze), two double-
modal techniques (Gesture+Speech and Gaze+Speech) and
one triple-modal technique (Gaze+Gesture+Speech).

C. AR Devices

We summarize the existing AR devices accessible to mul-
timodal interaction in Table I. We compare the number of
modalities, weight, and the FoV of each device.

The HMDs provide natural, head-tracked interface that
engages users in an immersive environment. These systems
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Fig. 2. The system architecture of GGS-AR. The three blocks on the left
represent the eye tracking thread, gesture recognition thread, and speech
detection thread. The right block represents the main workflow.

usually require complex registration techniques to locate real-
world objects [31], and the registration accuracy degrades in
less featured environment [45], [46]. Besides, some HMDs
have the wearing comfortableness problem due to the factors
such as total weight, see Table I. The hardware configuration
is usually fixed, it cannot be easily adapted to the different
needs in various studies, such as flexible selection of different
sensors and FoVs.

The desktop setups have also been investigated in interaction
research. It has been found that there is no significant differ-
ence between the desktops and the HMDs in terms of usability
[32], [33]. However, the interaction study with desktop setup
is highly effective, which could guide the HMD design for
intuitive experiences [27].

TABLE I
EXISTING AR DEVICES.

hardware No. of modalities weight (g) FoV

Magic Leap 1 3 316 40◦ × 30◦

Microsoft
HoloLens 1 2 579 30◦×17.5◦

Microsoft
HoloLens 2 3 566 43◦ × 29◦

HTC Vive +
ZED Mini [47] 3 875 100◦×110◦

AR-Rift [48] 2 790 80◦ × 90◦

In this work, we propose a lightweight AR system that
integrates a head-mounted eye tracker with scene camera,
a gesture recognizer and a microphone. The system can be
customized to different configurations by replacing different
sensors. The GGS-AR system does not require AR registration
algorithms, which impels us to focus on the study of multi-
modal interaction. Since we track the user’s head orientation
and adjust the content on the screen accordingly, the user’s
sense of immersion is increased.

III. SYSTEM DESCRIPTION

In this section, we describe the details of the GGS-AR
system. The system architecture is shown in Fig. 2. The system
has three threads: eye tracking thread, gesture recognition
thread and speech recognition thread. Each thread outputs
individual command, and the multimodal integrator combines
these commands and outputs a final command. A demo video
can be found at (https://youtu.be/TDFcD7CDO70).

A. Hardware Design

The hardware design features are: 1) the system should
support accurate head pose estimation, gaze tracking, hand
gesture recognition and speech recognition, the sensors can be
easily replaced; 2) the system should be light-weight and the
user feels comfortable to wear; 3) the system provides the real-
time visual feedback to the user. Based on these requirements,
we select the hardware as follows:

1) Hand gesture recognition: Leap Motion Controller [49].
2) Head-mounted eye tracker: Tobii Pro Glasses 2 [50].
3) Voice-input system: Plantronics Headset System for Desk

Phones.
4) Head pose estimation: ArUco Markers [51].
5) Server: Intel Core i5-8500 with 3.00Ghz CPU, NVIDA

GeForce RTX 2080 SUPER, and 27-inch Full HD
Widescreen monitor with resolution of 1920 × 1080.
Note that the screen can be replaced with a larger size,
or steroscopic 3D displays.

The hardware setup of GGS-AR sytem is shown in Fig.
1. The user sits at about 50 cm in front of a screen, he
wears the Tobii Pro Glasses 2, the Leap Motion Controller and
the Plantronics Microphone. The eye tracker’s manufacturer
reports an accuracy of 0.6◦ and precision of 0.05◦ [52]. The
weight of eye tracker is only 45 grams, which is comfortable
for the user to wear. The Leap Motion controller is mounted
on the user’s head using a strap. We place the microphone
near the user’s mouth to reduce the environmental noise. We
attach ten markers at the boundary of the screen, as shown in
right part of Fig. 1. This enables us to estimate user’s head
pose.

The total weight of our head-mounted devices is approx-
imately 380 grams. The FoV of GGS-AR system can be
adjusted by modifying the FoV of the imaginary screen (see
Fig. 3), the FoV is 50 × 35◦ in the current settings. Each
sensor of GGS-AR system can be replaced, e.g., the Tobii Pro
Glasses 2 can be substituted with Pupil Labs eye tracker [53].

B. Software Design

The software design features of GGS-AR are: 1) the data
threads from different sensors should be synchronized; 2) the
algorithm is capable of aligning virtual to real world easily
without complex AR registration algorithms; 3) the system
should be able to estimate the user’s head pose, and provide
user an immersive interaction environment. We will describe
details of the software implementation as below.
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Fig. 3. This figure describes the procedure of first-person display: 1) initialize
the FoV of virtual display. 2) transform the Pi or Po from eye tracker to
marker coordinates. 3) project the Pi of virtual display onto the computer
screen to product a projection. 4) Calibrate the projection.

1) Overview: The key software components include Leap
Motion SDK for gesture recognition, Tobii Glasses Controller
for gaze tracking, Porcupine [54] for wake word detection,
OpenGL for displaying computer graphics, GLSL for shader,
CUDA-OpenCV [55] for accelerating image processing, and
Boost [56] for multithreading.

2) Multimodal Integrator: The multimodal integrator man-
ages the multiple threads. In the eye tracking thread, camera-
based gaze coordinates are transformed into screen-based gaze
coordinates using the perspective matrices obtained in marker
detection. In the gesture recognition thread, screen-based ges-
tures are extracted from original position and orientation of
joints and fingertips using the following equation:

Pscreen = Mscreen ·Mprojection ·Mview ·Mmodel ·Plocal, (1)

where Plocal is the local coordinate of joints and fingertips
relative to its local origin, and Pscreen is the screen coordinate
of these points. The rotation matrix Mmodel scales, rotates
and translates object into scene. The rotation matrix Mview

orients scene in front of camera’s eye. The projection matrix
Mprojection applies perspective and sizes the frustum. Mscreen

transforms the coordinates from -1.0 and 1.0 to the pixel
coordinates. [57], [58]. In the speech recognition thread, the
system is triggered once the wake word is detected. All these
three interactions are combined in multimodal integrator.

3) First-person Display: Fig. 3 shows the procedure of
first-person display. We first imagine that there is a virtual
display in front of the scene camera of eye tracker, which
simulates the head-mounted display. We adjust the FoV of
virtual display according to different needs. Then we project
the virtual display onto the computer screen. Through the
distance-size ambiguity [59], the projection can form a display
in human eyes whose FoV is equal to the virtual display, thus
we call it ‘first-person display’. There are three steps to com-
pute the projection: 1) coordinate transformation, 2) display
projection and 3) offset calibration. We define three coordinate
systems: eye tracker coordinates e, marker coordinates m, and
screen coordinates s. The units of e and m are millimeter while
the unit of s is pixel.

Coordinate Transformation: Let Pi(i = 1, ..., 4) be one of
the four control points of virtual display. Po represents the
position of scene camera. Both Pi and Po are 3 × 1 vectors.
We transform these vectors from eye tracker coordinates to
marker coordinates using the following equation:

Pm
i = Re

m · P e
i + tem, (2)

where Re
m and tem are the 3 × 3 rotation matrix and 3 × 1

translation matrix from eye tracker coordinates to marker
coordinates. We calculate transformation matrix based on the
following steps. We first detect the ArUco markers [51] using
the marker detection algorithm based on traditional image
processing in [60], [61]. The pixel size of these markers
is scaled as small as possible for the purpose of diminish-
ing invasion. We estimate the user’s head pose following
three steps: 1) we calculate the markers’ physical coordinates
in marker coordinate system by manual calibration of the
marker’s physical location before the experiment; 2) we detect
the markers in the images captured from the scene camera on
the eye tracking glasses; 3) we compute the rotation matrix
Re

m and translation matrix tem of head relative to the marker
coordinate system, by applying the Efficient Perspective-n-
point (EPnP) algorithm [62].

Display Projection: Then we project Pm
i onto the computer

screen. Let Ai(i = 1, ..., 4) be one of the four control points
of the projection, Pm

o , Pm
i and Am

i are colinear, which can
be written as:

−−−−→
(PoAi)

m = λi
−−−−→
(PoPi)

m, (3)

where λi ∈ R. According to Eq. (2), Pm
o and Pm

i can be
solved. The z value of Am

i is equal to zero. Therefore, the x
and y coordinates of Am

i can be solved. We then transform
Ai,(x,y) from marker coordinates to screen coordinates, e.g.,

As
i,(x,y) = PPI ∗Am

i,(x,y), (4)

where PPI is pixels per inch.
Offset Calibration: When user’s head is perpendicular to the

center of computer screen, the projection should be ideally dis-
played on the screen’s center. The phenomenon that different
people keeps distinct manner such as different sitting position
and difference in wearing glasses, could invoke the deviation
of the display position of projection. Therefore, we compute
the distance between the projection of initial state and the
ideal projection, which a compensation for subsequent states.
As shown in Fig. 3, the blue quadrilateral is calibrated to the
red quadrilateral.

4) AR Graphics Rendering: The GGS-AR system uses
the GPU shaders to provide the realistic environment. The
rendering rate is 30 fps. We exploited OpenGL and GLSL for
system development, and implemented scene drawing, model
loading and multimodal interaction.

IV. EXPERIMENTAL SETUP

We conducted a 5 (modalities) × 2 (tasks) user study
to compare the usability of different modalities for AR in-
teraction. The experiment has a repeated measure within-
participants design, with interaction modality as the indepen-
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dent variables. The dependent variables include objective mea-
surements such as speed and accuracy, as well as subjective
measurements such as task load and user preference.

A. Hypothesis

In this experiment, we concern about the efficiency and
usability of the five modalities. We propose two hypotheses:
H1: Eye gaze-based interaction is more efficient than other
modalities.

Gaze-based interaction can be faster and requires less phys-
ical demand than free-hand gesture input [42], [63]. It is
also more direct than verbal command. Although gaze-based
system has the Midas-touch problem, we aim to combine eye
gaze with other modalities to mitigate this drawbacks and
enhance the communication speed and accuracy.
H2: The Gaze+Gesture+Speech interaction modality merges
the advantages of three modalities and improves user experi-
ence.

It has been reported that gaze-based interaction is more
suitable to point and select objects [10], [42], descriptive voice
input supports better system controllability [5], [6], [2], and
free-hand gestures hold the capabilities of transforming and
editing [37], [2], [3], [4]. To take advantages of different
modalities, we integrate them in a single system. However,
users may feel unacquainted with this new modality, especially
interacting with the objects for the first time.

B. Interaction Tasks

We used two interaction tasks in our experiments: the lamp
brightness adjustment task and the cube manipulation task, as

shown in Fig. 4. The lamp task [64] and cube task [5], [65] are
the commonly used AR interaction tasks, which represent a
series of control tasks in desktop applications. These two tasks
allow us to compare five modalities in different backgrounds,
magnitudes and frameworks.

Task 1: The lamp brightness adjustment task requires users
to adjust the brightness of a lamp to match the brightness of the
target lamp. As shown in the top part of Fig. 4, there are two
lamps in the work space, lamp 1 is placed on a wooden box
and lamp 2 is on the floor. When a certain lamp is selected, the
target lamp appears on the left of the lamp, indicating that the
lamp is selected. Then the user starts to brighten or darken
the lamp using different modalities: sliding up/down along
the control bar, pressing “plus” or “minus” button, speaking
“Brighten” or “Darken”, or gazing at the button. Once the user
finishes adjusting, they deselect the lamp.

Task 2: The cube manipulation task requires users to move
a white cube to the position of a colored cube. As shown in
the down part of Fig. 4, the white cube is placed on a wooden
box and the colored cube is placed on a table. The white
cube is highlighted when it is selected. Users move the cube
to the target location using different modalities: pinching the
cube, gazing at cubes, or using index finger to drag the cube.
They repeat the manipulations until they feel the two cubes
are overlapped.

To summarize, each modality involves the following two
operations:

1) Brighten or darken the lamp iteratively to match the
brightness of adjusted lamp with target lamp (BD:
Brighten or Darken)

2) Move the white cube to the position of colored cube
repeatedly until the user feels two cubes overlapped (MC:
Move Cube)

C. Interaction Modalities

We define three primary elements of interacting in AR:
primary pointing, confirmation and manipulation, which is
similar to [10]. Whether the task is complex or simple, users
have to perform these primary elements to interact in AR: 1)
Primary pointing: the user searches the target using a certain
modality. 2) Confirmation: the choice is confirmed and the
target is selected. 3) Manipulation: the user manipulates the
target, such as moving and scaling.

There are in total seven kinds of interaction modali-
ties: three single-modal techniques, three double-modal tech-
niques and one triple-modal technique. We chose five rep-
resentative modalities out of seven modalities. We excluded
the Gaze+Gesture and Speech Only techniques. For the
Gaze+Gesture techniques, both gaze and gesture are suitable
to point and select the objects [66]. Gaze-based pointing is
a good alternative to hand-based pointing [67]. Therefore, we
believe that gaze and gesture serve as similar roles in selecting
the objects, so we excluded the Gaze+Gesture technique.
For the Speech Only technique, the efficiency of speech may
be limited for spatial tasks such as object translation [68].
Whitlock et al. [39] found that voice interaction was least
efficient and least preferred. Therefore, we also excluded the
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Fig. 5. (1-A) Gesture Only: sliding up/down along the control bar. (1-B) Gaze Only: hovering over the “plus” button. (1-C) Gesture+Speech: pointing the
lamp and speaking “Brighter”. (1-D) Gaze+Speech: hovering over the lamp and speaking “Brighter”. (1-E) Gaze+Gesture+Speech: using gaze and speech to
select the lamp and pressing the “plus” button. (2-A) Gesture Only: keeping pinch gesture to move the cube. (2-B) Gaze Only: moving the white cube by
fixating at the colored cube. (2-C) Gesture+Speech: using speech to select the cube and index finger to drag the cube. (2-D) Gaze+Speech: looking at the
colored cube and speaking “Finish” to put the cube there. (2-E) Gaze+Gesture+Speech: using gaze and speech to select the cube and index finger to drag
the cube.

Speech Only technique. The reason why we assign different
actions to different modalities are described below.

For single-modal interaction, we used a one-second dwell-
time for Gaze Only interaction, and pinch for Gesture Only
interaction. There is a trade-off between speed and accuracy:
a short dwell-time may be too sensitive to select a target; a
long dwell time drops the speed advantage and the interaction
loses its naturalness [20]. Ware et al. [69] found the average
gaze selection time was 950ms. Here, we empirically chose
one second for the dwell time of selecting a target.

Gesture Only: The user pinches index finger and thumb for
one second to select the lamp/cube. S/he uses index finger to
slide up/down along the control bar to BD, see Fig. 5(1-A).
S/he deselects the lamp through the same hand pinch gesture.
After the cube is selected, the user keeps the pinch gesture and
moves the cube until it reaches the target, see Fig. 5(2-A).

Gaze Only: The user gazes at the ON/OFF button for
one second to select the lamp/cube. S/he fixates at “plus”
or “minus” button to BD, see Fig. 5(1-B), and gazes at the
colored cube for one second to MC, see Fig. 5(2-B).

For multimodal interaction, we mainly consider the fol-
lowing modality features: 1) Eye gaze is more suitable to point
and select objects. Kytö et al. [10] used eye gaze to point the
object and used secondary modalities to refine the selection.
2) Gestures hold the capability of selection and transforms
[37]. Gestures are usually used to select objects [2], and also
used to rotate and scale targets [3]. 3) Speech commands
offer better system control and are like triggers [39]. For
example, Piumsomboon et al. [2] used speech command
such as “move it” to perform an action. Therefore, in the
Gesture+Speech modality, we use gesture to select the lamps
or the cubes, and use speech to adjust the brightness of lamp
or manipulate the cubes. In the Gaze+Speech modality, gaze
is used to select the targets, speech offers the system control.
In the Gaze+Gesture+Speech modality, gaze is used to point
primarily, speech serves as a trigger, and gesture is used to
transform the target.

Gesture+Speech: The user uses his/her index finger to point
the lamp/cube and uses verbal command “Select” to confirm
the target. Then the user uses verbal command “Brighter” or

“Darker” to BD and “Finish” to deselect the target, see Fig.
5(1-C). After the cube is selected, the user uses his/her index
finger dragging white cube to MC, see Fig. 5(2-C), and then
uses verbal command “Finish” to complete the task.

Gaze+Speech: The user fixates at the lamp/cube and uses
verbal command “Select” to confirm the objects. Then s/he
uses “Brighter”, “Darker” and “Finish” to complete the target
operation, see Fig. 5(1-D). For the selected cube, the user
gazes at the target position and uses verbal command “Finish”
to place the cube at the gazed position, see Fig. 5(2-D).

Gaze+Gesture+Speech: The user fixates at the lamp/cube
and uses verbal command “Select” to confirm the targets.
Then s/he presses the “plus” or “minus” button to BD using
the index finger, see Fig. 5(1-E), and uses verbal command
“Finish” to terminate. After the cube is selected, the user uses
the index finger to drag the cube to MC, see Fig. 5(2-E), and
uses verbal command “Finish” to stop.
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0 5 min 20 min

② training 
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④ task 2:
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⑤ modality 

questionnaire

⑥ post-study 

questionnaire

58 min 63 min

testing phase(5 modalities)

Fig. 6. The experimental procedure.

D. Experimental Procedure

The flow diagram of our experiment is shown in Fig. 6. The
participants were first asked to fill in a pre-study questionnaire.
Then they proceeded to a training phase where they were
given instructions and practiced using the different interaction
techniques. After training, they conducted the experiments in-
cluding two tasks using five modalities and five questionnaires.
The order of the five interaction modalities was randomized.
Finally, the participants filled a post-study questionnaire to
assess the system and chose which modality they preferred
most. Prior to each section associated with eye gaze modality,
the participants conducted a user calibration for the eye tracker.
The participants were asked to balance accuracy and speed
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Fig. 7. Boxplots of task completion time of five modalities in two tasks. The
statistical significances are labeled with ** (p < 0.05). Error bars represent
standard deviations. The little colored circles represent the outliers. There is
no statistically significant difference for trial completion time on Task 1.

during the experiments. Each experiment took around 63
minutes.

E. Performance Evaluation

We evaluate the system performance by completion time
and accuracy. We define the accuracy as the brightness differ-
ence between the target lamps and the adjusted lamps in Task
1, and the distance difference between the colored cube and
the white cube in Task 2.

The subjective metrics report the usability and effectiveness
of five modalities. The modality questionnaire included a
NASA’s Task Load Index [70] with 7-point Likert scales and
six free-response questions to collect response on naturalness
and frustration of each modality. The post-study questionnaire
included a System Usability Scale (SUS) to assess the overall
usability of our AR system, and a preference question, i.e.,
“Overall, which modality do you prefer most?”

V. EXPERIMENTAL RESULTS

We recruited 12 subjects on campus (8 male, 4 female), the
average age is 23.8 (SD = 1.6). All participants have normal
or correct-to-normal vision, and they are able to see the hint
on computer screen clearly. According to results of the pre-
study questionnaire with 5-point Likert scales, the participants
reported low prior familiarity with AR (Mean = 2.8), the eye
tracker (Mean = 2.6), and hand gesture recognition system
(Mean = 2.7); medium familiarity with voice-based inputs such
as Siri (Mean = 3.6). All the participants can read and speak
English fluently.

A. Objective Evaluation Results

1) Completion Time: We used a repeated-measures
ANOVA (α = 0.05), in conjunction with post hoc pairwise
t-tests to identify whether the task completion time is sig-
nificantly different across modalities. The results are shown
in Fig. 7. The statistical analysis showed that the effect of
modalities on completion time for Task 2 (cube manipulation)
was statistically significant (F(4, 44) = 3.89, p = 0.041,
η2 = 0.26), while it failed to reject the equality of the
levels of modalities on completion time for Task 1 (lamp
brightness adjustment, p = 0.404). In Task 2, we found that
Gaze Only, Gesture+Speech and Gaze+Gesture+Speech were

60 80 10020 4000.15 0.200.05 0.100.00
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Fig. 8. Boxplots of accuracy of five modalities in two tasks. The statistical
significances are labeled with ** (p < 0.05). Error bars represent standard
deviations. The little colored circles represent the outliers.

significantly faster than Gaze+Speech (p = 0.017, 0.045, 0.027,
see Table II). Both Gaze Only and Gaze+Gesture+Speech
slightly outperformed Gesture Only in terms of task time (p
= 0.067, 0.091).

TABLE II
COMPLETION TIME COMPARISON ON TASK 2.

Modalities Compared df [71] t-statistic p-value

GEST vs GAZE 11 2.031 0.067
GEST vs GEST-SPCH 11 1.415 0.185
GEST vs GAZE-SPCH 11 -1.015 0.322
GEST vs GAZE-GEST-SPCH 11 1.854 0.091
GAZE vs GEST-SPCH 11 -0.462 0.653
GAZE vs GAZE-SPCH * 11 -2.822 0.017
GAZE vs GAZE-GEST-SPCH 11 -0.360 0.726
GEST-SPCH vs GAZE-SPCH * 11 -2.265 0.045
GEST-SPCH vs GAZE-GEST-SPCH 11 0.121 0.906
GAZE-SPCH vs GAZE-GEST-SPCH * 11 2.544 0.027

Notes: GAZE, GEST and SPCH stand for gaze, gesture and speech.
* indicates the p-value < 0.05.

There is no significant difference between Gesture+Speech
and Geture Only in terms of completion time in Task 1. How-
ever, Lee et al. found the difference between these two modal-
ities, that the gesture takes longer time than Gesture+Speech
[5]. They argue that this is mainly because using the speech
input in Gesture+Speech for changing color or shape of the
objects spend less time than using gesture input. However, in
our lamp brightness adjustment task, we found that there is no
difference in terms of manipulation time between the speech
input and gesture input for changing the brightness of a lamp.

2) Accuracy: We performed a repeated-measures ANOVA
(α = 0.05), in conjunction with post hoc pairwise t-tests to
identify whether the task accuracies are significantly different
across modalities. The results are shown in Fig. 8. The
statistical analysis indicated that the effect of modalities on
accuracy was statistically significant (brightness error, F(4, 44)
= 2.949, p = 0.052, η2 = 0.21 and position error, F(4, 44) =
10.388, p < 0.001, η2 = 0.49 respectively).

Overall, Gaze+Gesture+Speech appeared to be the most
accurate modality according to Fig. 8. Specifically, in Task
1, we found that Gaze+Gesture+Speech outperformed Gaze
Only, Gesture+Speech and Gaze+Speech in terms of accuracy
(p = 0.027, 0.027, 0.026, see Table III). In Task 2, we found
that Gaze+Gesture+Speech outperformed Gesture Only, Gaze
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Fig. 9. Bar charts of scores on the NASA-TLX questionnaire for comparing five modalities. The statistical significances (p < 0.05) are labeled with **. Error
bars represent standard deviations.

TABLE III
ACCURACY COMPARISON ON TASK 1.

Modalities Compared df t-statistic p-value

GEST vs GAZE 11 -1.449 0.175
GEST vs GEST-SPCH 11 -1.603 0.137
GEST vs GAZE-SPCH 11 -1.173 0.266
GEST vs GAZE-GEST-SPCH 11 1.000 0.339
GAZE vs GEST-SPCH 11 0.000 1.000
GAZE vs GAZE-SPCH 11 0.266 0.795
GAZE vs GAZE-GEST-SPCH * 11 2.548 0.027
GEST-SPCH vs GAZE-SPCH 11 0.364 0.723
GEST-SPCH vs GAZE-GEST-SPCH * 11 2.548 0.027
GAZE-SPCH vs GAZE-GEST-SPCH * 11 2.569 0.026

Notes: GAZE, GEST and SPCH stand for gaze, gesture and speech.
* indicates the p-value < 0.05.

Only and Gaze+Speech in terms of accuracy (p = 0.016, 0.002,
0.005, see Table IV). We also found that Gesture+Speech
outperformed Gesture Only, Gaze Only and Gaze+Speech
(p = 0.046, 0.006, 0.004). There is a significant difference
between Gesture Only and Gaze Only in move accuracy (p
= 0.031). All the other modalities including Gesture Only,
Gaze Only, Gesture+Speech and Gaze+Gesture+Speech out-
performed Gaze+Speech in Task 2 (p = 0.011, 0.033, 0.004,
0.005).

TABLE IV
ACCURACY COMPARISON ON TASK 2.

Modalities Compared df t-statistic p-value

GEST vs GAZE * 11 -2.467 0.031
GEST vs GEST-SPCH * 11 2.244 0.046
GEST vs GAZE-SPCH * 11 -3.035 0.011
GEST vs GAZE-GEST-SPCH * 11 2.835 0.016
GAZE vs GEST-SPCH * 11 3.407 0.006
GAZE vs GAZE-SPCH * 11 -2.443 0.033
GAZE vs GAZE-GEST-SPCH * 11 4.005 0.002
GEST-SPCH vs GAZE-SPCH * 11 -3.629 0.004
GEST-SPCH vs GAZE-GEST-SPCH 11 -0.309 0.763
GAZE-SPCH vs GAZE-GEST-SPCH * 11 3.511 0.005

Notes: GAZE, GEST and SPCH stand for gaze, gesture and speech.
* indicates the p-value < 0.05.

B. Subjective Evaluation Results

1) Task Load: Repeated-measures ANOVA analysis from
the NASA TLX questionnaire indicated that different modali-
ties resulted in different task loads. The post hoc analysis from
pairwise comparisons between the modalities were shown
in Fig. 9. In general, the Gaze+Gesture+Speech achieved
lowest task load, significantly lower than Gaze Only and
Gaze+Speech. However, the Gaze+Gesture+Speech has the
highest Mental demand. This is reasonable since the user
has to switch between the modalities. We also observed that
Gaze+Gesture+Speech achieved the lowest Physical/Temporal
demand, Effort and best Performance than other modalities.
The Gesture+Speech has the lowest Frustration, this might
because that the gesture and speech is most intuitive to use,
thus caused less frustration.

2) User Preference: According to the results of user pref-
erence question, the Gesture+Speech modality is the most
preferred by the users, which gained 58.3% votes, 33.3%
users preferred Gaze+Gesture+Speech modality, only one
participant preferred Gaze Only modality.

3) System Usability Scale: The average score of System
Usability Scale (SUS) is 71.9 (SD = 8.7), ranging from 60
to 87.5. According to the surveys comparing SUS scores for
different systems, GGS-AR achieved the level of “Good” [72].

VI. DISCUSSION

We found that there was no significant difference in Task
1 in terms of trial completion time. This might be due to the
lamps are relatively large, which are easy to manipulate and
require less time, while the cubes in Task 2 are small and it can
clearly reflect the efficiency and usability difference between
the interaction modalities. We also noticed that there was a
gaze position drifting phenomenon when the user spoke too
loud, which caused difficulty in selecting and manipulating
the small object. It might because the Gaze+Speech modality
takes the longest time and holds the lowest accuracy among all
modalities, thus the wearing position of glasses might change
after long time usage. In the experiment of Gesture Only, we
found that the hand gesture may occlude participants’ vision
due to hand pinch gesture for translating the cube, which may
explain the high Effort and Frustration of Gesture Only.
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A. User Feedback

In the free questions, participants claimed that Gaze+Ges-
ture+Speech is novel and efficient. “Three interactions are
combined to reduce the task difficulty and I can complete
it faster.” (P3). P5 and P7 expressed the similar opinions.
Some participants found the Gaze Only is fast. “The Gaze
Only techniques was very quick and smooth.” (P2). But some
participants found it weak with fatigue after using for a
long time. “It was also convenient to use, but I felt my
eyes dry.” (P6). Both our objective results and user feedback
showed that the Gaze+Speech modality is challenging and
inaccurate. “When I speak the verbal command, gaze point
may drift resulting in low accuracy and the difficulty to select
the target.” (P12). P2 and P5 also found this phenomenon.
Most of the participants found that Gesture+Speech enjoyable
and intuitive, e.g., “it facilitated the operation to a certain
extent and achieved the synergistic complement.” (P9). But
some participants found the verbal command complex. “I
need to remember the voice commands correctly.” (P2) Some
participants found Gesture Only is natural but requires high
demand. “I need to keep a fixed pinch gesture all the time,
which is somewhat fatiguing.” (P3). P5, P8 and P9 also felt
exhausted.

B. Hypothesis Validation

H1: Eye gaze-based interaction is more efficient than other
modalities.

Our prediction was partially supported. In Task 1, we found
that Gaze+Gesture+Speech achieved higher accuracy than
Gesture+Speech (p = 0.027), see Table III, while there is no
significant difference in terms of trial completion time. We
argue that the size of lamps is relatively large, so that it is
easy to manipulate and requires less time. In Task 2, both
Gaze Only and Gaze+Gesture+Speech slightly outperformed
Gesture Only in terms of completion time (p = 0.067, 0.091),
see Table II. However, on account of the gaze drift problem,
Gaze+Speech has lower accuracy than Gesture Only and
Gesture+Speech (p = 0.011, 0.004), see Table IV. We think
that small cubes require more accurate interaction modalities.
Besides, user’s feedback also suggested that “the gaze estima-
tion accuracy needed to be improved” (P4). We conclude that
eye gaze-based interaction improves the speed but might not
guarantee the accuracy. A similar conclusion was found by the
prior work [10] where Gaze Only achieves the fastest speed
but the least accuracy among the interaction modalities. The
reason for the difference could be the well-known calibration
and drift problem on wearable eye trackers [73]. In our study
of Gaze Only and Gaze+Speech, we found that the accuracy
of gaze estimation tended to degrade over time, due to subtle
shifting of eye tracker during head movement.
H2: The Gaze+Gesture+Speech interaction modality merges
the advantages of three modalities and improves user experi-
ence.

Our results supported this hypothesis. The triple-modal tech-
nique tackles the limitations of single-modal interaction, and
improves user experience. In Task 1, Gaze+Gesture+Speech
achieved higher accuracy than Gaze Only, Gesture+Speech

and Gaze+Speech (p = 0.027, 0.027, 0.026), see Table III.
In Task 2, for the completion time, Gaze+Gesture+Speech
outperformed Gaze+Speech (p = 0.027), see Table II. For
accuracy, Gaze+Gesture+Speech outperformed Gesture Only,
Gaze Only and Gaze+Speech (p = 0.016, 0.002, 0.005),
see Table IV. Subjective feedback also reported that “three
interactions are well integrated in Gaze+Gesture+Speech. Eye
gaze provides rapidly primary pointing, verbal command offers
better system controllability, and hand gestures are accurate.”
(P8). Therefore, we conclude that the Gaze+Gesture+Speech
modality is superior in terms of efficiency.

We further investigated the characteristics of different
modalities. Eye gaze is more suitable to point and select
objects, which reduces physical demand and fatigue compared
to hand gesture, as found in [10]. Gesture holds the capability
of selection and transforms, which is more flexible for complex
operations [3]. e.g., Piumsomboon et al. [37] created 800 ges-
tures for 40 selected tasks. Speech is like trigger [39] and does
not need the dwell time to execute the command, as shown in
[5]. Therefore, for the primary pointing and confirmation in the
Gaze+Gesture+Speech, the user fixates at the lamp/cube and
uses verbal command “Select” to confirm the targets, which
requires the less physically demand and saves the time. For
the manipulation in the Gaze+Gesture+Speech, the user uses
his/her index finger to manipulate the targets, and uses the ver-
bal command to terminate, which also does not need the dwell
time and guarantees the accuracy. Above analysis accounts for
the superior performance of Gaze+Gesture+Speech. However,
we noticed that Gaze+Gesture+Speech achieved the highest
Mental demand score in the NASA-TLX questionnaire. We
considered that the novice may need some time to master how
to use the triple-modal technique when interacting with objects
in AR.

C. Implications and Design Recommendations
Based on aforementioned results, we bring more actionable

implications for future research as follows:
1) Gaze in AR: Eye gaze-based interaction can improve

the speed. However, the drift of gaze calibration cannot be
negligible. Frequent recalibration is impractical in the exper-
iment due to time-consuming and disruptive. There are three
methods to alleviate the influence of gaze drift: a) Use an
online offset compensation algorithm to compute the offset
between the estimated fixation position and the actual fixation
position [74]. b) Define proper target sizes according to the eye
gaze distribution of surrounding the target [10]. c) Integrate
secondary modality such as gesture, speech to refine the eye
gaze-based object selection.

2) Multimodal Interaction in AR: We provide the design
recommendations for multimodal interaction: a) Use eye gaze
to conduct swift actions such as selecting targets; b) Use the
verbal command to offer better system control and confirm
operations, and c) Use the hand gesture to execute skilled
actions such as panning and zooming.

D. System Limitations
In the experiment, we found that there was no statistically

significant difference for trial completion time on Task 1.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

We suspect that the object size had a leading impact on the
interaction efficiency. The size of table lamps is 7 × 4cm2,
while the size of cubes is only 3×3cm2. Therefore, it may be
easier to select and manipulate the lamps. Future extensions of
the GGS-AR may compare the effect of different initial scales,
such as 25%, 50%, 75%, 100% of target size. Besides, the
different user distances may affect the interaction efficiency.
In order to capture clear image of ArUco markers, the user
should sit 40 cm to 70 cm away from the screen.

Another limitation of our work is that we only examined
the basic operations such as primary pointing, confirmation,
moving and sliding for a small set of tasks. For more compre-
hensive comparison of different modalities, future explorations
of the study may introduce additional interaction operations
such as zoom, rotation, and more complex editing by eye gaze
[75].

Finally, in the current implementation, we use a 2D com-
puter screen to display the interactive environments. Future
work could explore to display 3D environment using a stereo
display. We also noticed that a limited FoV constrains how
objects can be placed and search through [76]. Future ex-
plorations of GGS-AR may study the different size of FoV
by setting the FoV parameters or using varisized displays.
The current sample size (N = 12) is small, which may be
underpowered to find large effects [77]. The lack of partici-
pants might impact the study outcome, and we will enlarge
the number of participants in the future work.

VII. CONCLUSION

In this paper, we proposed a novel GGS-AR system to in-
vestigate the benefits of multimodal interaction in AR system.
Our lightweight system integrates several sensors that support
accurate gaze tracking, hand gesture and speech recognition
simultaneously. We evaluated and compared various modality
combinations using the proposed system. The experimental
results demonstrate that the Gaze+Gesture+Speech modality
is superior to other modalities in terms of the completion
time and interaction accuracy. The Gesture+Speech modality
is more preferred by the users. This study offers insights to
design multimodal interactive AR systems in a more flexible
manner.
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