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Fig. 1: We aim to recognize user’s visual task types in virtual reality. To achieve this, we provide four scene-agnostic task types and a
novel dataset including temporal annotations. Using this dataset, we also propose the Task type Recognition method via Contrastive
Learning and Post-optimization (TRCLP) to recognize user task types.

Abstract—With eye tracking finding widespread utility in augmented reality and virtual reality headsets, eye gaze has the potential
to recognize users’ visual tasks and adaptively adjust virtual content displays, thereby enhancing the intelligence of these headsets.
However, current studies on visual task recognition often focus on scene-specific tasks, like copying tasks for office environments,
which lack applicability to new scenarios, e.g., museums. In this paper, we propose four scene-agnostic task types for facilitating
task type recognition across a broader range of scenarios. We present a new dataset that includes eye and head movement data
recorded from 20 participants while they engaged in four task types across 15 360-degree VR videos. Using this dataset, we propose
an egocentric gaze-aware task type recognition method, TRCLP, which achieves promising results. Additionally, we illustrate the
practical applications of task type recognition with three examples. Our work offers valuable insights for content developers in designing
task-aware intelligent applications. Our dataset and source code will be released upon acceptance.

Index Terms—Virtual reality, eye tracking, visual task type recognition, depth learning, intelligent application

1 INTRODUCTION

Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR), collectively referred to as Extended Reality (XR), have found
numerous applications in various fields such as healthcare, education,
and entertainment in recent years [4, 24, 40, 53]. With the widespread
adoption of MR and AR headsets, such as Apple’s Vision Pro and
Microsoft HoloLens, an increasing number of researchers from both
industry and academia are engaging in XR research.

In terms of interaction design, many new studies aim to make XR
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systems more intelligent [21, 38, 52]. A prospective way is to predict
user’s visual intents and dynamically adapting the virtual content within
XR environments [43]. For example, when a user is recognized as
viewing a painting, the XR system could play coordinating music to
create an immersive atmosphere. Alternatively, when a user is reading
an electronic book, the XR system could automatically turn the pages
[33]. Predicting user’s intents is also known as visual task recognition,
which has numerous applications in the XR field, e.g., low-friction
user interfaces [11, 29, 37], adaptive virtual content design [12, 15],
and attention-driven intelligent systems [25, 52]. Consequently, XR
systems have the potential to reduce the interaction burden on users by
recognizing their tasks and interaction goals, thereby facilitating the
completion of corresponding tasks with less friction [28, 56].

An effective approach for visual task recognition is to leverage eye
gaze data. Yarbus’s seminal work analyzed eye positions across seven
different visual tasks and found significant differences in eye movement
patterns [55]. Eye movements have also been proven valuable for re-
vealing user behavior and cognition. Numerous studies have interpreted
the relationship between eye movements and visual attention [7,13,23],
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cognitive states [16, 18], and memory [3]. Inspired by these findings,
researchers have attempted the “inverse Yarbus process”, i.e., identi-
fying user tasks from eye movement patterns [8, 38, 41]. For instance,
Bulling et al. recognized tasks such as copying, reading, writing and
web browsing, etc, in an office scenario based on eye movement fea-
tures like fixations and saccades [9]. Several studies have explored task
recognition in specific scenarios, such as museum tours [6, 33], robot
repair [5], and desktop software usage [50]. These works have achieved
promising task recognition results within their respective domains.

However, these studies on task recognition face two challenges
when applied in practical scenarios. 1) These studies typically define
scene-specific tasks like copying tasks for office environments [9, 43]
or memory task for corridors [38]. When the scene changes, these
tasks need to be redesigned for the new context, restricting their utility
across diverse scenarios. 2) For ease of data collection, participants are
often asked to perform a singular task during each session. In contrast,
real-world situations involve frequent switching between multiple tasks.
For instance, as depicted in Fig. 1 (b), a user might initially focus on
a television screen, then explore their surroundings, and subsequently
count items on a table, etc. Existing datasets, therefore, fall short in
accommodating the free switching between multiple tasks. These chal-
lenges highlight the limitations of traditional task recognition research
and emphasize the need for more versatile and pragmatic solutions.

To address the first challenge, we propose four scene-agnostic task
types derived from an analysis of eye movement patterns and object
states, facilitating task type recognition across a broader range of sce-
narios. Regarding the second challenge, we design a temporal anno-
tation method for data collection, which provides precise temporal
boundaries for multiple task types in every video clip. This collected
dataset enables training the recognition model to support free task type
switching. Furthermore, we conduct a collection process to capture
eye and head movement data from 20 participants while performing
these task types. Based on this dataset, we propose an egocentric gaze-
aware Task type Recognition method through Contrastive Learning and
Post-optimization (TRCLP, pronounced as “try-clip”), which learns
the mapping between eye movement data and task types, enabling task
type classification. We also evaluate its performance through extensive
experiments. The results demonstrate that our TRCLP outperforms
state-of-the-art methods in terms of recognition accuracy and the re-
quired length of time window. Finally, we demonstrate the applications
of task type recognition with three examples. Our work has the potential
to enhance the intelligence of XR systems in diverse contexts.

Overall, our paper makes the following contributions:

• We propose four scene-agnostic visual task types for VR systems,
enabling task type recognition in a broader range of scenarios.

• We provide a new dataset for task type recognition that provides
precise temporal boundaries for multiple task types in every video
clip, using which we can train the recognition method to support
free task switching.

• We present TRCLP, a novel learning-based approach for recog-
nizing task types, which outperforms the state-of-the-art methods.
Additionally, we also demonstrate the utility of task type recogni-
tion through three examples.

2 RELATED WORKS

In this section, we review basic eye movement Types and visual task
definitions, as well as a discussion of eye-tracking-based methods for
task recognition.

2.1 Eye Movement Types
The main types of eye movements include fixations, saccades, and
smooth pursuit, blinks [35]. Fixation involves holding a stationary
object in the foveal region for visual information acquisition [19]. The
duration of a fixation varies between 50∼600 ms and typically includes
small eye movements such as tremors and drifts to aid in aligning the
eye with the target [39]. Saccades are rapid eye movements between
fixation points to bring the visual scene onto the fovea [19]. The

duration of each saccade depends on the specific task, with an average
duration of 20∼40 ms, and the amplitude of the saccade also depends
on the task. Smooth pursuit is a tracking eye movement used to keep a
moving object on the fovea. It can only be executed when a moving
object is present and the eye movement speed is generally less than
30°/s [34]. Blinking refers to the opening and closing of the eyelids to
keep the eyes comfortable, with a frequency of 4∼6 seconds [1].

2.2 Visual Task Definitions

Yarbus et al.’s seminal work discovered that the eye movement trajecto-
ries differ when performing seven different visual tasks while observing
a painting [55]. For instance, the eye movement trajectory differs sig-
nificantly between observing an image with and without instructions,
indicating that a user’s task can be inferred from their eye movements.
Since then, many researchers have linked tasks with eye movements
by different task settings [10, 27, 31, 47, 50]. For example, Bulling et
al. designed six tasks for an office setting, including copy, read, write,
video, browse, and null [9]. Bektas et al. designed reading, inspecting,
and searching tasks for a robot repair scene in an AR setting [5]. Hild
et al. required users to explore, observe, search, and track while watch-
ing street walking videos [20]. Lan et al. set reading, conversation,
and watching tasks for a museum scene [33]. Hu et al. designed free
viewing, search, saliency, and track tasks for a more general scene [22].

In summary, these works mainly explored visual tasks in specific
scenes. In this research, we design four scene-agnostic task types,
enabling the recognition across a broader range of scenarios. A detailed
comparison of between prior works and our research is shown in Tab.
1. Furthermore, in the previous works, only one task was collected per
session, and continuous task type switching was not supported. In this
research, we design a method that provides precise temporal boundaries
between task types in every video clip, which can be used to train the
recognition method to support free task type switching.

2.3 Task Recognition Methods

Researchers have proposed many eye-tracking-based task recognition
methods [5, 11, 41, 48]. Commonly used methods can be divided into
two categories. One is to define a rich set of eye-tracking metrics, con-
duct maximum correlation analysis, select the most relevant metrics,
and use machine learning methods for learning and recognition. For
example, Bulling et al. defined 90 eye-tracking metrics based on be-
haviors such as saccades, fixations, and blinks, and used support vector
machines (SVM) for task recognition [9]. Srivastava et al. designed 50
eye-tracking metrics, including low-level and mid-level features, and
used SVM and other machine learning methods for recognition [50].
The disadvantage of this method is that it requires a lot of effort to
design hand-crafted features, and the relevant eye-tracking metrics also
differ when the visual tasks are different.

In recent years, deep learning methods have shown strong gener-
alization ability, which simplifies the requirements for eye-tracking
metrics. For example, Ishlmaru et al. used three metrics, including
blink speed, eye movement coordinates, and head acceleration, and
used convolutional neural network (CNN) and Long short-term memory
(LSTM) methods to predict user tasks [27]. Hu et al. used three met-
rics, including gaze position on the screen, head orientation, and gaze
direction in the world, and used CNN and bidirectional gated recurrent
unit (BiGRU) for prediction [22]. In contrast with prior works, in this
research, we use contrastive learning to improve the generalization of
the method and use post-optimization to make the results smoother.

3 DATA COLLECTION

First, we analyze eye movement patterns and summarize four visual
task types, as introduced in Section 3.1. Then, we introduce the visual
stimuli, including our 360° VR video datasets and text images, in
Section 3.2. Next, we described the temporal annotation process for the
data in Section 3.3, followed by a detailed explanation of the system
implementation in Section 3.4. We also provide information on the
participants and data collection process in Section 3.5. Finally, we
presented an analysis of the dataset at the end.



Table 1: A comparison between selected prior works and our research on task recognition. Our task types support recognition across a broader
range of scenarios. Moreover, our dataset incorporates temporal annotations, facilitating the recognition of switching between multiple task types.

Research Task Definitions Stimuli Number Users Temporal
Annotation

Free Task
Switching

Bulling et al. [9] Office: Copy ◦ Read ◦ Write ◦Video ◦ Browse ◦ Null Real World 8 No No

Borji et al. [8] Paintings: Yarbus’s original 7 tasks for paintings 15 images 21 No No

Kiefel et al. [31] Maps: Explore ◦ Search ◦ Plan ◦ Follow ◦ Comparison 1 image 17 No No

Srivastava et al. [50] Desktop software: Desktop software tasks Real World 24 No No

Hild et al. [20] Street walking: Explore ◦ Observe ◦ Search ◦ Track 1 video 30 No No

Bektas et al. [5] Robot repair: Read ◦ Inspect ◦ Search Real World 10 No No

Lan et al. [33] Museum: Read ◦ Communicate ◦ Browse ◦ Watch 203 images, 13 videos 8 No No

Malpica et al. [38] Indoor corridor: Free exploration ◦ Memory ◦ Visual Search 3 VR scenes 37 No No

Hu et al. [22] Task Types: Free viewing ◦ Search ◦ Saliency ◦ Track 15 VR videos 30 No No

Ours Task Types: Fixate ◦ Observe ◦ Track ◦ Free exploration 10 images, 15 VR videos 20 Yes1 Yes1

1 Our temporal annotation provides precise temporal boundaries for multiple task types in every video clip, using which we can train the
recognition method to support seamless task type switching.

(a) Track a bicycle rider (b) Track a walker (c) Track a shark

Fig. 2: Visual tasks and associated eye movement patterns across three
scenarios.

3.1 Design of Visual Task Types
Our goal is to design scene-agnostic task types for VR systems. Prior
research first analyzed the specific scenes, and then defined relevant
visual tasks [5, 9, 50]. Instead, we focus on analyzing eye movement
characteristics to categorize task types. We begin by clarify the mean-
ings of eye movement type, visual task and visual task type.

• Eye Movement Type. The types of eye movements refer to the
movement patterns of gaze points, include fixations, saccades and
smooth pursuit, etc. The characteristics and distinctions of these
eye movement types were discussed in Section 2.1.

• Visual Task. This concept pertains to specific tasks that users are
performing, typically connected to particular objects or scenes.
For example, a user visually tracks a bicycle rider or tracks a
shark, as shown in Fig. 2.

• Visual Task Type. Visual tasks are classified into distinct types
based on object states and eye movement types. For example,
tasks such as tracking a bicycle rider, a walker, or a shark fall
under the same task type, which involves tracking moving objects.

Eye movements facilitate the clear observation of objects in different
motion states by aligning the image of an object of interest with the
central fovea of the retina. Therefore, this process of observing various
states of objects corresponds to perform different types of visual tasks.
Common eye movement types include fixation, smooth pursuit and
saccade [35]. Fixation typically aims at fixating on a stationary object
for a certain period. Hence, Fixating on a Stationary object (FS ) is
identified as one of our task types, which is rarely explored by prior
studies. Smooth pursuit involves following a moving target. Many
studies set the specific targets to track [20, 31]. We categorize these
tracking tasks under the task type Tracking a Moving object (TM ).

Saccade is generally made to observe multiple objects. During this
process, users usually engage in a series of saccades interrupted by
short fixations to examine the objects. We categorize the saccades
involved in observing multiple objects into sequential and irregular
types. Sequential saccades, often aim at observing objects arranged
in order, such as reading text or counting objects in a sequence [17,

Table 2: Four visual task types proposed in this study.

Visual Task Type State of Object Eye Movement Type
Fixating on a

Stationary object (FS) Stationary object Long fixations

Tracking a Moving
object (TM) Moving object Smooth pursuit

Observing Sequential
objects (OS)

Sequentially
stationary objects

Sequential saccades with
short fixations

Free Exploration (FE)
Unordered

stationary or
moving objects

Irregular saccades with
short fixations

44, 46, 50], leading us to identify Observing Sequential objects (OS )
as another task type. In contrast, irregular saccades are generally
utilized to observe randomly arranged objects. Common visual task
types in this category include object searching and free exploration
[5, 22, 38]. However, object searching is often a transient precursor
to other task types with a shorter duration, making it challenging to
record. Therefore, we do not consider it as a separate visual task type
in this study but include it within other task types, e.g., searching for a
target to fixate on. In this work, Free Exploration (FE ) serves as the
representative task type for irregular saccades.

The relationship among these four task types, object states, and eye
movement types is summarized in Table 2. Additionally, examples of
eye movements for these four types are illustrated in Fig. 3.

3.2 Visual Stimuli

For these task types, we employ VR 360° videos as visual stimuli for
data collection. We establish specific criteria for video selection: 1) To
ensure that the movement of targets does not introduce any ambiguity
in the task instruction, the panoramic camera remains stationary. 2)
Each video includes stationary objects, moving objects, and multiple
objects of the same type, serving as targets for specific visual tasks.
3) Our videos offer a diverse content and styles, including indoor and
outdoor scenes, sports, shows, and exhibitions, etc.

Based on these requirements, we select three videos from the EHTask
and twelve videos from YouTube, as shown in Fig. 4. Notably, while
our visual stimuli are 360° VR videos, these videos are captured in real-
world scenarios, such as basketball games, street scenes, and stations.
Consequently, we believe these videos provide visual stimuli consistent
with real-world settings, enabling our visual task type recognition
method to be effectively applied in practical scenarios. Each 360°
video is saved using the equirectangular map format. The videos have
a resolution of 3840×(1920∼2160) pixels and a frame rate of 30Hz.
We crop each video to 150 seconds, as done in EHTask. Furthermore,
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Fig. 3: The eye movement patterns related to four task types. (a) Fixating on a stationary object, (b) Observing sequential objects, (c) Tracking a
moving object, (d) Free exploration.
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Fig. 4: The experimental setup (bottom-right) and the 15 real-scene 360°
videos used in our experiments.

these videos are projected onto the inner surface of a spherical skybox,
allowing users to view them from the inside of the sphere in VR.

We employ visual tasks such as sequential counting and reading text
to represent the OS. Therefore, we include ten text images for reading,
which are extracted from two books and a speech text: “Rich Dad Poor
Dad”, “The Craft of Research” and “Steve Jobs’ Speech”. Each text
varies in line widths, column heights and text backgrounds.

3.3 Data Temporal Annotation
Based on our abundant visual stimuli above, we propose an annotation
method for collecting data that correlates gaze patterns with task types.
Traditional approaches to annotate datasets typically involve post-hoc
annotation, where experts manually label the data after its collection [26,
49]. However, this method faces challenge when individuals frequently
switch between multiple tasks. Since visual tasks are highly subjective
and user-dependent, it is difficult to determine the specific task a user
is engaged in and the exact moments of task switching. To address this
limitation, we introduce a temporal annotation method comprising two
stages: pre-annotation and user-annotation.

Pre-annotation. During this stage, annotation experts label multiple
annotations for each video. Each annotation consists of a specific
task instruction, and a time interval during which the tasks appeared
continuously, represented as [Li,Ri] where 0 ≤ Li ≤ Ri ≤ 150s, i =
1...N. Here, N denotes the number of annotations of one video. Fig. 5
illustrates an example of pre-annotation for one video.

In this process, the annotation expert follows these steps: 1) Watch
each 360° VR video 2∼3 times to be familiar with the content. 2)
Identify objects in the video that correspond to each visual task type
(e.g., FS ). For example, the expert may consider the stationary “host’s
face” for the FS. 3) Play the video and identify time intervals when
the “host’s face” remains static. This yields a specific task instruction
(e.g., “fixate on the host’s face at 45° direction”) and a corresponding
time interval (e.g., [0, 27] s). 4) Except for the FE, repeat steps 2∼3
multiple times for each task type to increase the number of annotations.
5) Move on to the next task type and repeat the process.

It is possible for the time intervals of all annotations within a given
task to overlap, as shown by FS in Fig. 5. Additionally, the concate-
nation of all annotations for each task type may not cover the entire

OS

FS

0 s 30 s 60 s 90 s 120 s 150 s

TM

FE

Fixate on the host's face. Fixate on the vegetables on the cutting board at 330°.

Fixate on the images on the television screen at W direction.
OS

Count the number of items on the shelves at 30~45° direction.

Read text.

Track the face of the walking contestant. Track the moving host’s face.

Freely explore the scene to familiarize yourself with it.

FSFE FSTM OS

 Random task types
 Clear and precise task instructions

TM

OSFS TMFE OS FE

 Input: 360° VR Video

 Step 1: Pre-annotation

 Step 2: User-annotation

Annotate task instructions, 
start times and end times

Fig. 5: Temporal annotation of task type datasets. We pre-annotate each
video by labeling four task types with specific task instructions and time
intervals. During user-annotation, users are presented with random tasks
and are responsible for determining the start and end times of each task.

video segment, as indicated by TM in Fig. 5. This occurs because there
are moments in the video without any moving objects. On average,
each video contains N̂ = 13.9 annotations, which include 4.5 (FS), 4.6
(OS), 3.8 (TM), and 1 (FE). Notably, FS and TM annotations in some
videos refer to a group of objects, allowing the user to select one object
to fixate on or track. Therefore, the number of stimuli in each video
exceeds the number of annotations.

User-annotation. The user-annotation stage (i.e., data collection)
proceeds as follows. 1) The system randomly assigns task instructions
to users, who can pause the system using the joystick to read the
instructions (the first instructions pause automatically). Users then
locate targets according to the instructions. Data is not recorded during
system pauses. 2) Before resuming, users must align their gaze and head
directions with those of the first frame from the pause state, displayed on
the VR HMD. The system then checks if the current are within 5° of the
first frame, prompting adjustments if needed. This ensures the spatial
continuity of recorded head and gaze data, enabling seamless switching
between task types. Once aligned, users start performing tasks using
the joystick, and the instruction disappears. 3) Users determine when to
terminate a task, or the system automatically ends the task if it exceeds
the time interval limit for that task. Users then proceed to the next
randomly assigned task. 4) For each video, users repeat steps 1∼3 to
complete the entire data collection process.

This approach ensures that all collected task annotations have well-
defined temporal boundaries. It is worth noting that these task instruc-
tions, such as “fixating on the host’s face” or “fixating on the vegetable”
in Fig. 5, are provided to assist users in understanding and performing
visual tasks. However, in our data annotation, all fixation instructions
across different scenes are considered as the same task type, i.e., FS.
Therefore, our task types are scene-agnostic.



Table 3: Statistics of four task types in the dataset.

Task Type Name FS OS TM FE
Task Type Number 498 499 373 392
Task Type Duration

(Total, min) 163.5 173.0 132.4 130.1

Duration Proportion (%) 27.3% 28.9% 22.1% 21.7%

Table 4: Statistics of task type switching in the dataset.

Switch Count Switch Count Switch Count
FS→OS 173 FS→TM 140 FS→FE 121
OS→FS 196 OS→TM 131 OS→FE 108
TM→FS 117 TM→OS 109 TM→FE 90
FE→FS 130 FE→OS 142 FE→TM 65

3.4 System Implementation
By combining the aforementioned task types, visual stimuli, and tem-
poral data annotations, we describe the implementation details of the
data collection system as follows.

Random Process for Selecting Task Types. The random process
for selecting specific tasks is illustrated in Supplementary Material. We
found one-third of the time in the video datasets has no moving objects.
Our objective is to ensure that four task types have the equal probability
of appearing in the final dataset. To achieve this, we have assigned
probabilities to each task based on the proportion of time taking up in
pre-annotation, i.e., FS (22%), OS (22%), TM (34%) and FE (22%).
For OS, in real-world scenarios, we argue that there are more types
of sequential counting with different representations. Therefore, we
assign a 75% probability to counting and a 25% probability to reading.
To prevent user sickness from large numbers of head rotations, we set
that in one video session, the FE does not occur continuously, and the
total number of FE does not exceed two.

Data Recording. The eye feature data we record follows the same
format as EHTask [22]. This includes eye-in-head data (EiH (ex,ey),
where ex,ey ∈ [0,1]), head orientation data (Head (hx,hy), where hx ∈
[−180◦,180◦] and hy ∈ [−90◦,90◦]), and gaze-in-world data (GiW
(gx,gy), where gx ∈ [−180◦,180◦] and gy ∈ [−90◦,90◦]). Besides eye
feature data, we also record the task instruction, start time and end time
of each task. Data is not recorded during the pause stages of the system.
Before resuming the system, users are prompted to actively rotate their
gaze and head directions with their directions before the system paused,
ensuring the continuity of recorded data. Each task has a duration of
5∼20 seconds, and during the training phase, we inform the user that
they do not need to keep track of time themselves. Instead, they only
need to ensure the duration falls approximately within this time range.

Apparatus. We conduct data collection using a computer equipped
with an Intel Core i5-8500 CPU running at 3.00Ghz and an NVIDIA
GeForce RTX 2080 SUPER GPU. The HTC Vive Cosmos headset,
together with the 7invensun Droolon F1 eye tracker, which provides
an accuracy of 0.5°, is employed for presenting 360° VR videos. We
utilize Unity3D to render the VR videos, and recorded EiH, Head, and
GiW data. The experimental setup is shown in the bottom right of Fig.
4. To assist users in understanding the task instructions that describe
the positions of stimuli, we employ a navigation compass that indicates
direction, as shown in Supplementary Material. The user is positioned
at the center of the compass, with the 360° directions marked at 15-
degree intervals, allowing for easy identification of the target position.
The compass is placed at the bottom of the field of view.

3.5 Participants and Procedure
We recruited a total of 20 participants from the campus (12 males and
8 females). The average age of the participants was 23 years (std =
2.4), and all had normal or corrected-to-normal vision. The VR headset
allowed individuals to wear glasses while using it. Additionally, all
participants were proficient in reading English text.

Each participant began the study by completing a pre-study question-
naire. Following this, they watched an introductory video that explained

(a) Task Type Number
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Fig. 6: Statistics of Task Type Datasets. (a) Comparison of the frequency
of each type in the datasets. (b) Comparison of the duration of each type.
(c) Comparison of the number of switches between different task types.

the visual task types they would be completing. The video also included
demonstrations of a user watching a 360° VR video and performing
the visual tasks under task instructions. Next, participants underwent a
gaze calibration procedure. They then proceeded to the training phase,
where they randomly executed 1∼2 videos to familiarize themselves
with the overall operation, before moving on to the experimental phase.
If the gaze estimation was found to be inaccurate before playing each
video, the users could perform gaze calibration again. After watching 3
videos, the users were instructed to take a one-minute break.

In our experiment, each participant was instructed to watch 12 videos,
randomly selected from the 15 videos. Each video was played once and
presented in a random order. It resulted in a total of 240 recordings (20
participants × 12 videos). Each recording contained EiH data (25Hz),
Head data (25Hz), and GiW data (25Hz). Each of the 15 videos was
viewed by 16 participants.

3.6 Data Analysis
The analysis of the collected data is presented in Tab. 3 and 4, from
which we make the following observations. 1) The total duration of
the dataset is 10 hours, with each task type ranging from 130 minutes
(21.7%) to 173 minutes (28.9%), and the distribution of task type
durations is relatively balanced, as shown in Fig. 6 (b). 2) As discussed
in Section 3.5, we limit the frequency of FE occurrences due to the
sickness caused by excessive head rotations, resulting in the shortest
total duration. 3) As described in Section 3.4, one-third of the time
in the video datasets has no moving objects. To achieve a relatively
balanced duration proportion, we increase the random probability of
TM, as shown in Fig. 6 (a). 4) The total number of task switching
is 1522, with an average of 6.34 switches per video. 5) The average
number of switches between different task types is 126.83 (std = 33.3).
Except for TM→FE (90) and FE→TM (65), the counts for switching
types are over 100, and the switching between different task types was
relatively balanced, as shown in Fig. 6 (c).

4 RECOGNITION MODEL

Based on the extensively collected datasets mentioned above, we pro-
pose the TRCLP to recognize user’s task types. An overview of the
TRCLP is described in Fig. 7. Firstly, time-series data augmentation is
applied to the input data, as described in Section 4.1. Subsequently, the
different views of the data are inputted into the temporal contrasting
module to minimize the impact of data augmentation. This is achieved
by optimizing the contrastive loss, as explained in Section 4.2. The
trained encoder is then incorporated into the task type recognition
framework, as outlined in Section 4.3. Finally, a filtering method that
has been specifically designed is utilized to process the output of net-
work, thereby producing smoother results and improved recognition
accuracy, as discussed in Section 4.4.

4.1 Time-Series Data Augmentation
Contrastive methods aim to maximize the similarity between differ-
ent views of the same instance while minimizing their similarity to
other instances. Thus, appropriate data augmentation techniques are
crucial for contrastive learning. Common augmentations for time-
series data include jitter, magnitude-warping, time-warping, scaling,
and flipping [51]. After analyzing eye movement trajectories and con-
ducting tests, we found that scaling and flipping provide the most
significant enhancements. Data from an eye tracker is typically filtered
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Fig. 7: Overview of the proposed TRCLP. Our method augments input gaze data through scaling or flipping. The augmented data is then processed
by the contrastive feature extraction module to enhance the encoder’s generalization. This encoder, combined with an MLP module, recognizes task
types. The recognized task types are then refined by a post-optimization module for smoother results and improved accuracy. Note that the scaled
eye gaze data does not match the video background as only the gaze data is augmented.

and smooth, showing no signs of jitter. Introducing magnitude-warping
or time-warping can cause inconsistent changes within each temporal
segment, leading to qualitative variations in eye movement patterns and
decreased accuracy.

In contrast, scale augmentation ensures consistent magnitude
changes across temporal segments. For instance, when tracking moving
objects, scaling affects only the height or width of the eye movement
trajectory, enlarging or shrinking the motion area without altering the
patterns, as shown in Fig. 7. Flip augmentation reverses the temporal
order of the eye movement data without changing the motion trajectory,
only its direction. For each input sample without task switching, we set
a 50% probability for scaling augmentation and a 50% probability for
flipping augmentation. During task switching, flip augmentation is not
applied to avoid changing the label in the last frame.

4.2 Contrastive Feature Extraction

Supervised contrasting learning leverages contrastive loss to prompt the
encoder in producing more similar feature representations for entries
belonging to the same visual task type, leading to enhanced clustering
in the feature space. Assuming that each batch consists of B samples,
denoted as {Xi,Yi}i=1···B, where Xi comprises EiH, Head, and GiW data
represented as (xe

i , xh
i , xg

i ), and Yi is the task type label of the last frame
of each time window. After applying data augmentation, each batch in
the network training contains 2B samples, denoted as

{
X̃ j,Ỹ j

}
j=1···2B.

Here, X̃2i and X̃2i−1 correspond to the augmented and non-augmented
views of Xi, respectively. Additionally, Ỹ2i = Ỹ2i−1 = Yi. The Encoder
network maps the data to a set of feature vectors, Fj = Enc

(
X̃ j
)
, where

Fj =
(

f e
j , f h

j , f g
j

)
. Let I ≡ {1 · · ·2B} represent all the index values

in the batch. We define K( j) ≡
{

k | k ∈ I\{ j},Ỹk = Ỹ j
}

as the set of
indices of views that have the same task type label as sample j in 2B
samples except j. To compute the supervised contrasting loss Lcon, we
use f e

j as an example, which is formulated as follows:

Lcon = ∑
j∈I

−1
|K( j)| ∑

k∈K( j)
log

exp
(

f e
j · f e

k /τ

)
∑a∈I\{ j} exp

(
f e

j · f e
a/τ

) , (1)

where τ represents a temperature parameter [30]. We empirically set τ

to 0.07. Similar formulas apply to f h
j and f g

j . This loss function brings
together features that belong to the same task type in the embedding
space, while separating features from different task types.

4.3 Task Type Recognition

Our task type recognition framework is based on the architecture pro-
posed by EHTask [22]. This approach has demonstrated high effective-
ness by leveraging a CNN for feature extraction and subsequently pro-
cessing the temporal features using a BiGRU. Therefore, we also adopt
this framework. The framework initiates by employing an encoder to
extract temporal features. This encoder comprises three branches, each
containing a 1D CNN and a BiGRU. These branches independently
process EiH Data, Head Data, and GiW Data, respectively. We propose
to pre-train this encoder in the contrastive feature extraction module of
Section 4.2. Following the encoder, an Multilayer Perceptron (MLP)
block consisting of two fully connected (FC) layers is utilized.

The sampling frequency of our eye-tracking data is set at 25Hz.
During the training process, we utilize a sliding window approach
to segment the data. We explore various window sizes ranging from
2 seconds to 10 seconds, with a frame interval of 1 frame between
adjacent windows. Regarding other parameters like the learning rate
and batch size, we maintain the same settings as the EHTask. The
network training is conducted on a NVIDIA GeForce RTX 1080 GPU
with 11 GB of memory.

4.4 Post-optimization

Based on our observations, we found that there are several frames of
incorrect recognition results in the output of our network, as illustrated
in the first line of results in Fig. 8. To address this issue, we propose
a post-optimization strategy to smooth the results. Let Ri denote the
recognized output of the i-th frame. Suppose that the recognized task
types R1, ...,Ri−1 are task A, and Ri is task type C, where A ̸=C. In this
case, we need to determine whether Ri is a correct task type switching
or a recognition error. To address this, we consider the results from
the past 2 seconds and the next 1 second to obtain a reasonable result.
Specifically, we use the following criteria:

• Condition 1: A certain task type appears for more than 80% of
the time within the past 2 seconds.

• Condition 2: A certain task type appears for more than 80% of
the time within the next 1 second.

When Condition 1 is satisfied, we consider the task type that ap-
peared within the past 2 seconds as A. Similarly, when Condition 2
is satisfied, we consider the task type that appears within the next 1
second as B. The task type of the current frame is C. If Condition 2 is
met and B ̸=C, we modify C to B in two cases: 1) Condition 1 is met,
but A ̸= C; 2) Condition 1 is not met. If Condition 2 is not met, but
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Fig. 8: The recognization results of one sample using the proposed
post-optimization method. The first line of results represents the direct
output of our network.

Condition 1 is met and A ̸=C, we modify C to A. If the above strategy
is not satisfied, we do not modify C.

Our post-optimization method has been demonstrated to be highly
effective in Section 5.2, as it strives to produce smoother results and
eliminate error frames with abrupt changes. Fig. 8 provides a specific
example of the effectiveness of our method.

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to compare our
method with state-of-the-art methods in task type recognition on our
dataset. We perform a cross-user evaluation and a cross-scene evalua-
tion across multiple time windows. We analyze the specific recognition
performance for different task types and further examine the recogni-
tion results for specific samples. Finally, we conduct an ablation study
to validate the effectiveness of different modules.

5.1 Evaluation Metric and Comparisons
As common used in prior works, we used classification accuracy as the
metric to evaluate the performance of task type recognition methods.
For the evaluation of different methods generalization capability across
different users, we conduct five-fold cross-user evaluation. Specifically,
the dataset is equally divided into five folds, with four folds used
for training and the remaining fold used for testing. Each method is
trained and tested five times, with each fold being tested once. The
mean recognition accuracy from five tests are employed for following
analysis. The similar process is adopted for cross-scene evaluation.

We compared the performance of our model with state-of-the-art
methods from task type recognition and time series data prediction.

• EHTask: The EHTask is regarded as the best-performing method
among known visual task type recognition approaches, and it
serves as the baseline method for our study. The EHTask consists
of three CNN+BiGRU models, with the extracted features fed
into a two-layer fully connected network for regression.

• Random Forests (RF): Random Forests have also been extensively
utilized in task prediction [20, 36]. Hu et al. conducted experi-
ments that proved Random Forests to outperform other machine
learning methods, such as Support Vector Machine (SVM) [9]
and Boosting Classifier [10], in task recognition. Therefore, we
employ Random Forests to represent the performance of conven-
tional machine learning methods.

• MLP with Varying Network Depths: MLP is frequently employed
in time series data prediction [2, 14, 54]. In our study, we explore
the performance of MLP in task recognition by varying the num-
ber of hidden layers (Number = 2, 4, 6). We denote them as
MLP-2, MLP-4, and MLP-6, respectively.

• CNN-GRU-Attention (CGA): Attention mechanisms focus on
crucial parts of the data using temporal features processed by
RNN in time-series prediction [45]. We utilize the implementation
provided by Oguiza et al. [42]. The CNN module used is the same
as that in EHTask, while the attention mechanism employs the
recommended parameters, with a dropout rate set to 0.1.

Table 5: The performance of various methods is evaluated across differ-
ent time windows. The best method is highlighted in bold font, while the
second-best method is emphasized with an underline.

Time Window (s) 2s 6s 10s

Cross-
User

EHTask [22] 72.1% 73.3% 71.0%
RF [20] 68.3% 70.1% 69.4%

MLP-2 [14] 64.2% 63.5% 67.8%
MLP-4 [14] 65.8% 70.5% 70.1%
MLP-6 [14] 64.9% 70.2% 70.0%
CGA [42] 72.4% 69.1% NaN

TRCLP (Ours) 76.1% 76.0% 71.1%

Cross-
Scene

EHTask [22] 67.3% 70.4% 68.0%
RF [20] 59.8% 62.3% 61.2%

MLP-2 [14] 60.6% 63.5% 62.6%
MLP-4 [14] 61.3% 64.3% 63.7%
MLP-6 [14] 60.9% 64.3% 63.6%
CGA [42] 68.3% 65.9% 64.6%

TRCLP (Ours) 71.2% 71.0% 66.6%
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Fig. 9: The comparison of the time delays in recognizing new task types,
considering time windows (TWs) of both 2 seconds and 6 seconds. The
red line represents the normal distribution of the data.

5.2 Results

Performance comparison of different methods on our dataset. We
evaluated the accuracy of our models against state-of-the-art techniques
using time windows of 2, 6, and 10 seconds. The 10-second window
size was employed in EHTask. This data augmentation mentioned
in Section 4.1 was also used for all other methods. The results were
shown in Tab. 5, from which we made the following observations. 1)
In a cross-user evaluation, our method outperformed the second-best
method by a margin of 2.8%, while in cross-scene evaluation, our
method slightly outperformed the second-best method. 2) Analysis of
different time windows within the same method revealed that while
other methods almost reached peak accuracy with a 6-second window,
our TRCLP method demonstrated optimal accuracy with a shorter 2-
second window. 3) When all methods use a 2-second time window,
our method outperforms the second-best method by 3.7% and 2.9% in
cross-user evaluation and cross-scene evaluation, respectively.

It is noteworthy that, although the performance improvement of
our method is not substantial when considering all time windows, a
significant additional advantage is its efficiency in requiring only a
2-second window to achieve optimal recognition results, compared to
the 6-second window required by EHTask. This efficiency allows our
method to predict task types at least 4 seconds faster than EHTask,
enhancing its practical application in real-time scenarios.

Comparison of time delays in recognizing new task types across
different windows for the prposed TRCLP. We aimed to investigate
whether different time windows have an impact on the time delays
during task switching. According to the results of Tab. 5, we considered
the comparison of TWs of both 2 seconds and 6 seconds in cross-user
evaluation. The results were shown in Fig. 9. Upon analyzing the
average time delays, we found that the TW = 2s data inputs yield a
more prompt and accurate recognition of newly emerged task types,
with a time advantage of 0.52s over the TW = 6s input. The reason
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Fig. 10: To illustrate the recognized results, we present a specific example. This example shows the eye movement trajectories of a user while
performing four task types in the VR video of the underwater world.

Table 6: Ablation study of each component in our method. The results
demonstrate that our method outperforms all ablated models.

Baseline DA CL POST Cross-User Cross-Scene
✓ 71.8% 66.9%
✓ ✓ 72.1% 67.6%
✓ ✓ ✓ 72.4% 67.9%
✓ ✓ ✓ ✓ 76.1% 71.2%

we analyze was that the data length of TW = 2s was much shorter
compared to TW = 6s. Consequently, when switching to a new task,
the data variation grabbed attention more quickly for TW = 2s. Based
on the comprehensive analysis above, we decided to adopt TW = 2s as
the window size for practical use of our TRCLP.

Ablation study of each component in our method. We conducted
ablation studies on our dataset to validate the effectiveness of each
component in our method, including the Data Augmentation mod-
ule (DA), Contrastive Learning module (CL), and Post-optimization
module (POST). To compare with the baseline method, we sequen-
tially added each module and retrained the network. We evaluated the
performance using cross-user and cross-scene evaluation with 5-fold
cross-validation. Table 6 presented the recognition performance of
each component in our method, which showed improvement in both
evaluations. Notably, the addition of the Post-optimization module
resulted in the most significant improvement. Our method achieved a
4.3% improvement over the baseline method in both evaluations.

5.3 Discussion
Our research enhances practical visual task recognition through the
introduction of scene-agnostic task types and a novel dataset, character-
ized by accurate temporal boundaries for multiple task types in every
video clip. With this dataset, we can train the task type recognition
method that supports free task switching. The proposed TRCLP method
achieves promising results using a shorter 2-second window, thereby
improving its utility in real-time applications. In the following sections,
we analyze the performance of our method across individual task types
and explain the recognition results by integrating the specific scene and
gaze trajectory analysis.

Analysis of recognition for different visual task types. We present
the confusion matrices of recognition results of different task types, as
shown in Fig. 11. The diagonal elements indicate the accuracy of each
task type, while the off-diagonal elements represent the probability of
misclassifying task types. Based on this matrix, the following obser-
vations can be made: 1) In cross-user evaluation, OS and TM achieve
an average accuracy of 70%, but in cross-scene evaluation, the aver-
age drops to 60%. There is significant confusion (13.4% and 16.6%)
between OS and TM in cross-scene evaluation. It is believed that
when the speed of the object being tracked by the user is too fast,
smooth pursuit is replaced by catch-up saccades to track the target.
Land et al. reported that this change occurs when the object’s speed
exceeds 30°/s [34]. At this point, the saccades resemble the scanning
movements of the OS. 2) In cross-scene evaluation, OS and TM have
probabilities of 14.0% and 12.6% of being misclassified as FE, respec-
tively. This is because in certain scenarios, the eye and head movements
of users during OS and TM resemble those during FE. For instance, in
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Fig. 11: The confusion matrices of our method are presented for the
cross-user (left) and the cross-scene (right) recognition results, with a
time window of 2 seconds. These matrices have been normalized based
on the ground truth rows.

Fig. 10 (c), users were instructed to count the number of people in the
scene. Due to the dispersed positioning of the people in the scene, users
exhibited significant head and eye movements. This eye movement
behavior is similar to that of FE, as shown in Fig. 10 (e). 3) Both
FS and FE achieve accuracy rates above 80% in both cross-user and
cross-scene evaluations. This can be attributed to significant differences
observed in fixation duration and head movement magnitude between
these two task types and the others.

Analysis of specific example. We provide a specific example to
elaborate on the recognition results. Fig. 10 displays the eye movement
trajectories of a user observing the underwater world scene. The tempo-
ral characteristics of eye movements vary significantly across the four
visual task types. In the task type of fixating, the fixation points exhibit
slight movement within a very small area, as depicted in Fig. 10 (b).
In the task type of observing, there is typically an sequential transition
between objects, as shown in Fig. 10 (d). The tracking, on the other
hand, involves a relatively smooth gaze trajectory without sudden turns,
as demonstrated in Fig. 10 (a). Finally, in the free exploration, the gaze
points move irregularly, accompanied by large-angle movements, as
illustrated in Fig. 10 (e).

6 APPLICATION DEMOS FOR TASK TYPE RECOGNITION

In this section, we explore the applications of task type recognition in
XR systems, which can adapt virtual content displays to user needs,
facilitating smoother task completion. Our application design involves
three steps. 1) When a user performs a specific task within an XR
system, such as tracking a walker as shown in Fig. 2 (b), the system uses
our task type recognition method to identify the task type as TM. 2) An
object detection algorithm detects the target of the user’s gaze, obtaining
its label (e.g., “person”) and contour. 3) Based on the recognized task
type and target label, the system infers the user’s specific visual task as
“track a person” and adapts virtual content displays, such as showing
the contour and trajectory of the tracked target.

The main contribution of this paper is task type recognition and
we do not use any object detection algorithms. Therefore, in the fol-
lowing application demos, target locations are pre-annotated offline.
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Fig. 12: We show the applications of task type recognition through three examples. (a) Fixation Assistance (Product recommendation). (b) Reading
Assistance (Highlighting the line to read). (c) Tracking Assistance (Showing the boundingbox and trajectory).

A promising approach is to use the Segment Anything Model (SAM)
proposed by Meta [32], which can generalize to unfamiliar objects
without additional training. SAM can use the user’s gaze points as
prompts to recognize the label and contour of the target. In summary,
by integrating our task type recognition method with SAM, it is feasible
to design task-aware intelligent applications, referred to as intelligent
assistance, to help users complete tasks more efficiently.

Below, we design three specific applications to provide valuable
insights for content developers. For further details, please refer to the
supplemental video. 1) Fixation Assistance (Product Recommen-
dation). When our system recognizes that the user is fixating on a
television, it triggers an internet search for discounted televisions to
recommend to the user, as pre-configured for this demo (Fig. 12 (a)).
2) Reading Assistance (Highlighting the Reading Line). Reading is
a specific visual task under the task type OS. When our system infers
the user’s task as reading, it triggers the reading assistance (Fig. 12
(b)). The designed assistance highlights the text line being read while
dimming the others, aiding user focus. 3) Tracking Assistance (Show-
ing the boundingbox and trajectory). When our system recognizes
that the user is tracking a person, it triggers the tracking assistance,
which involves displaying the bounding box and historical movement
trajectory, as depicted in Fig. 12 (c).

Besides the specific applications mentioned above, we also explore
both explicit and implicit uses of our visual task types to fully uncover
the potential applications of this technology. Explicit Uses. 1) Virtual
Museum Tours: Recognizing the task type as FS can trigger the display
of additional information about exhibits, such as the artist’s name and
artwork history. For OS, the system can guide users through a tour of
related items, like different exhibits. 2) AR Navigation: When a user’s
task type is FS, such as a landmark or building, the AR system can
display relevant information, including distance. For TM, like a vehicle
or person, the system can provide real-time updates about movement or
identity, such as speed, overlaid around the moving object. 3) Adaptive
User Interfaces: By recognizing the user’s current task type, the system
can adapt the user interface to prioritize relevant information. For FE,
the interface can minimize clutter and provide a wider field of view.
For OS, it can highlight the next object in the sequence.

Implicit Uses. 1) Attention Analysis: In a classroom, recognizing
FS, e.g., fixating on the teacher or teaching materials, can assess the
user’s level of focus. 2) Training Simulations: In military simulations,
recognizing TM, such as tracking a fighter jet, can evaluate the user’s
response time to specific procedures. 3) Cognitive Monitoring: Recog-
nizing the timing of task switching can indicate cognitive load levels,
allowing adaptive systems to adjust difficulty or provide supplemental
information when the user is overwhelmed or under-engaged.

7 SYSTEM LIMITATIONS AND FUTURE WORK

Although our task type recognition method can support free switching
between task types, we found several limitations that we plan to address
in future work. Firstly, as discussed in Section 5.3, there is an overlap in
eye movement patterns, particularly between OS and TM. This occurs
when an object’s motion exceeds a certain speed (e.g., 30°/s in visual
angle), causing smooth pursuit to transition into catch-up saccades.
A potential solution is to introduce gaze target detection when eye
movements overlap. This is because in OS, users observe a series
of objects and switch their gaze between them, whereas in TM, they
continuously focus on a single object.

Secondly, to ensure that the movement of targets does not introduce
any ambiguity in the task instruction, the panoramic camera is required
to be stationary. Participants stood at the center of the camera position
and watched the 360-degree panoramic video without moving. We plan
to consider more complex scenarios, such as user movement, which is
more in line with actual usage habits. In the future, we plan to design
new task instructions for user movement scenarios.

Thirdly, this paper selects FE to represent the visual task type as-
sociated with irregular saccades. In fact, irregular saccades are the
most complex type of eye movement in real-world contexts, potentially
corresponding to various task types. As mentioned in Section 3.1, these
task types include “object searching”, although it is not explored in this
paper. Another example is observing a painting, which also involves
numerous irregular saccades [33, 55]. Future research plans include
a more in-depth analysis of task types involving irregular saccades to
enhance the practical application of visual task type recognition.

8 CONCLUSION

In this study, we focused on egocentric gaze-aware visual task type
recognition in immersive VR environments. We proposed four versatile
visual task types to enable task type recognition across a broader range
of scenarios. A dataset was created by annotating these task types on
15 360-degree VR videos, facilitating free switching between multiple
task types. A user study captured eye and head movements of 20
participants performing these tasks. We present a novel learning-based
approach for recognizing task types that outperforms state-of-the-art
methods in terms of recognition accuracy and the required length of
time window. Three examples demonstrated the applications of task
type recognition. This study provides a technological foundation and
valuable insights for the intelligent development of XR systems.
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[5] K. Bektaş, J. Strecker, S. Mayer, D. K. Garcia, J. Hermann, K. E. Jenß,
Y. S. Antille, and M. Solèr. Gear: Gaze-enabled augmented reality for
human activity recognition. In Proceedings of the 2023 Symposium on
Eye Tracking Research and Applications, ETRA ’23, article no. 9, 9 pages.
Association for Computing Machinery, New York, NY, USA, 2023. doi:
10.1145/3588015.3588402 2, 3

[6] J. M. Bird, P. A. Smart, D. J. Harris, L. A. Phillips, G. Giannachi, and
S. J. Vine. A magic leap in tourism: Intended and realized experience of
head-mounted augmented reality in a museum context. Journal of Travel
Research, 62(7):1427–1447, 2023. 2

[7] A. Borji and L. Itti. State-of-the-art in visual attention modeling. IEEE
transactions on pattern analysis and machine intelligence, 35(1):185–207,
2012. 1

[8] A. Borji and L. Itti. Defending yarbus: Eye movements reveal observers’
task. Journal of Vision, 14(3):29–29, 03 2014. doi: 10.1167/14.3.29 2, 3

[9] A. Bulling, J. A. Ward, H. Gellersen, and G. Tröster. Eye movement anal-
ysis for activity recognition using electrooculography. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(4):741–753, 2011. doi:
10.1109/TPAMI.2010.86 2, 3, 7

[10] A. Coutrot, J. H. Hsiao, and A. B. Chan. Scanpath modeling and classifica-
tion with hidden markov models. Behavior research methods, 50(1):362–
379, 2018. 2, 7

[11] B. David-John, C. Peacock, T. Zhang, T. S. Murdison, H. Benko, and T. R.
Jonker. Towards gaze-based prediction of the intent to interact in virtual
reality. In ACM Symposium on Eye Tracking Research and Applications,
ETRA ’21 Short Papers, article no. 2, 7 pages. Association for Computing
Machinery, New York, NY, USA, 2021. doi: 10.1145/3448018.3458008
1, 2

[12] L. T. De Paolis and V. De Luca. The impact of the input interface in a
virtual environment: the vive controller and the myo armband. Virtual
Reality, 24(3):483–502, 2020. 1

[13] S. Frintrop, E. Rome, and H. I. Christensen. Computational visual attention
systems and their cognitive foundations: A survey. ACM Transactions on
Applied Perception (TAP), 7(1):1–39, 2010. 1

[14] M. W. Gardner and S. Dorling. Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences.
Atmospheric environment, 32(14-15):2627–2636, 1998. 7

[15] J. Hadnett-Hunter, G. Nicolaou, E. O’Neill, and M. Proulx. The effect
of task on visual attention in interactive virtual environments. ACM
Transactions on Applied Perception (TAP), 16(3):1–17, 2019. 1

[16] M. Hayhoe and D. Ballard. Eye movements in natural behavior. Trends in
cognitive sciences, 9(4):188–194, 2005. 2

[17] J. M. Henderson and A. Hollingworth. Chapter 12 - eye movements
during scene viewing: An overview. In G. Underwood, ed., Eye Guidance
in Reading and Scene Perception, pp. 269–293. Elsevier Science Ltd,
Amsterdam, 1998. doi: 10.1016/B978-008043361-5/50013-4 3

[18] J. M. Henderson, S. V. Shinkareva, J. Wang, S. G. Luke, and J. Olejarczyk.
Predicting cognitive state from eye movements. PloS one, 8(5):e64937,
2013. 2

[19] R. Hessels, D. Niehorster, M. Nyström, R. Andersson, and I. Hooge. Is
the eye-movement field confused about fixations and saccades? a survey
among 124 researchers. Royal Society Open Science, 5:180502, 08 2018.
doi: 10.1098/rsos.180502 2

[20] J. Hild, M. Voit, C. Kühnle, and J. Beyerer. Predicting observer’s task
from eye movement patterns during motion image analysis. article no. 58,
5 pages, 2018. doi: 10.1145/3204493.3204575 2, 3, 7

[21] Z. Hu, A. Bulling, S. Li, and G. Wang. Fixationnet: Forecasting eye
fixations in task-oriented virtual environments. IEEE Transactions on

Visualization and Computer Graphics, 27(5):2681–2690, 2021. 1
[22] Z. Hu, A. Bulling, S. Li, and G. Wang. Ehtask: Recognizing user tasks

from eye and head movements in immersive virtual reality. IEEE Transac-
tions on Visualization and Computer Graphics, 29(4):1992–2004, 2023.
doi: 10.1109/TVCG.2021.3138902 2, 3, 5, 6, 7

[23] Z. Hu, S. Li, C. Zhang, K. Yi, G. Wang, and D. Manocha. Dgaze: Cnn-
based gaze prediction in dynamic scenes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 26(5):1902–1911, 2020. 1

[24] Z. Hu, C. Zhang, S. Li, G. Wang, and D. Manocha. Sgaze: A data-
driven eye-head coordination model for realtime gaze prediction. IEEE
Transactions on Visualization and Computer Graphics, 25(5):2002–2010,
2019. 1

[25] S. Hutt, K. Krasich, J. R. Brockmole, and S. K. D’Mello. Breaking out
of the lab: Mitigating mind wandering with gaze-based attention-aware
technology in classrooms. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–14, 2021. 1

[26] H. Idrees, A. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev, R. Sukthankar, and
M. Shah. The thumos challenge on action recognition for videos "in the
wild". Computer Vision and Image Understanding, 155, 04 2016. doi: 10.
1016/j.cviu.2016.10.018 4

[27] S. Ishimaru, K. Hoshika, K. Kunze, K. Kise, and A. Dengel. Towards read-
ing trackers in the wild: Detecting reading activities by eog glasses and
deep neural networks. In Proceedings of the 2017 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2017 ACM International Symposium on Wearable Computers, Ubi-
Comp ’17, 8 pages, p. 704–711. Association for Computing Machinery,
New York, NY, USA, 2017. doi: 10.1145/3123024.3129271 2

[28] T. R. Jonker, R. Desai, K. Carlberg, J. Hillis, S. Keller, and H. Benko. The
role of ai in mixed and augmented reality interactions. In CHI2020 ai4hci
Workshop Proceedings. ACM, 2020. 1

[29] A. Keshava, A. Aumeistere, K. Izdebski, and P. Konig. Decoding task
from oculomotor behavior in virtual reality. In ACM Symposium on Eye
Tracking Research and Applications, pp. 1–5, 2020. 1

[30] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020. 6

[31] P. Kiefer, I. Giannopoulos, and R. Martin. Using eye movements to
recognize activities on cartographic maps. 11 2013. doi: 10.1145/2525314
.2525467 2, 3

[32] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment
anything, 2023. 9

[33] G. Lan, T. Scargill, and M. Gorlatova. Eyesyn: Psychology-inspired eye
movement synthesis for gaze-based activity recognition. In 2022 21st
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pp. 233–246, 2022. doi: 10.1109/IPSN54338.2022.
00026 1, 2, 3, 9

[34] M. Land and B. Tatler. Looking and Acting: Vision and eye movements
in natural behaviour. Oxford University Press, 07 2009. doi: 10.1093/
acprof:oso/9780198570943.001.0001 2, 8

[35] L. Larsson, M. Nyström, and M. Stridh. Detection of saccades and post-
saccadic oscillations in the presence of smooth pursuit. IEEE Transactions
on Biomedical Engineering, 60(9):2484–2493, 2013. doi: 10.1109/TBME
.2013.2258918 2, 3

[36] H. Liao, W. Dong, H. Huang, G. Gartner, and H. Liu. Inferring user
tasks in pedestrian navigation from eye movement data in real-world
environments. International Journal of Geographical Information Science,
33(4):739–763, 2019. 7

[37] F. Lu and Y. Xu. Exploring spatial ui transition mechanisms with head-
worn augmented reality. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, CHI ’22, article no. 550, 16 pages.
Association for Computing Machinery, New York, NY, USA, 2022. doi:
10.1145/3491102.3517723 1

[38] S. Malpica, D. Martin, A. Serrano, D. Gutierrez, and B. Masia. Task-
dependent visual behavior in immersive environments: A comparative
study of free exploration, memory and visual search. IEEE Transactions
on Visualization and Computer Graphics, 2023. 1, 2, 3

[39] S. Martinez-Conde, S. Macknik, and D. Hubel. The role of fixational eye
movements in visual perception. Nature reviews. Neuroscience, 5:229–40,
04 2004. doi: 10.1038/nrn1348 2

[40] H. Martínez, D. Skournetou, J. Hyppölä, S. Laukkanen, and A. Heikkilä.
Drivers and bottlenecks in the adoption of augmented reality applications.
Journal of Multimedia Theory and Applications, 2:27–44, 03 2014. doi:

https://doi.org/10.1007/s00426-022-01658-y
https://doi.org/10.2196/29080
https://doi.org/10.1145/3588015.3588402
https://doi.org/10.1145/3588015.3588402
https://doi.org/10.1167/14.3.29
https://doi.org/10.1109/TPAMI.2010.86
https://doi.org/10.1109/TPAMI.2010.86
https://doi.org/10.1145/3448018.3458008
https://doi.org/10.1016/B978-008043361-5/50013-4
https://doi.org/10.1098/rsos.180502
https://doi.org/10.1145/3204493.3204575
https://doi.org/10.1109/TVCG.2021.3138902
https://doi.org/10.1016/j.cviu.2016.10.018
https://doi.org/10.1016/j.cviu.2016.10.018
https://doi.org/10.1145/3123024.3129271
https://doi.org/10.1145/2525314.2525467
https://doi.org/10.1145/2525314.2525467
https://doi.org/10.1109/IPSN54338.2022.00026
https://doi.org/10.1109/IPSN54338.2022.00026
https://doi.org/10.1093/acprof:oso/9780198570943.001.0001
https://doi.org/10.1093/acprof:oso/9780198570943.001.0001
https://doi.org/10.1109/TBME.2013.2258918
https://doi.org/10.1109/TBME.2013.2258918
https://doi.org/10.1145/3491102.3517723
https://doi.org/10.1145/3491102.3517723
https://doi.org/10.1038/nrn1348
https://doi.org/10.11159/jmta.2014.004


10.11159/jmta.2014.004 1
[41] K. Min and J. J. Corso. Integrating human gaze into attention for egocentric

activity recognition. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pp. 1069–1078, January
2021. 2

[42] I. Oguiza. tsai - a state-of-the-art deep learning library for time series and
sequential data. Github, 2022. https://github.com/timeseriesAI/
tsai. 7

[43] K. Pfeuffer, Y. Abdrabou, A. Esteves, R. Rivu, Y. Abdelrahman, S. Meitner,
A. Saadi, and F. Alt. Artention: A design space for gaze-adaptive user
interfaces in augmented reality. Computers & Graphics, 95:1–12, 2021. 1,
2

[44] P. Prasse, D. R. Reich, S. Makowski, S. Ahn, T. Scheffer, and L. A. Jäger.
Sp-eyegan: Generating synthetic eye movement data with generative
adversarial networks. In Proceedings of the 2023 Symposium on Eye
Tracking Research and Applications, ETRA ’23, article no. 18, 9 pages.
Association for Computing Machinery, New York, NY, USA, 2023. doi:
10.1145/3588015.3588410 3

[45] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell. A dual-
stage attention-based recurrent neural network for time series prediction.
arXiv preprint arXiv:1704.02971, 2017. 7

[46] K. Rayner, X. Li, C. C. Williams, K. R. Cave, and A. D. Well. Eye
movements during information processing tasks: Individual differences
and cultural effects. Vision Research, 47(21):2714–2726, 2007. doi: 10.
1016/j.visres.2007.05.007 3

[47] K. Rook, B. Witt, R. Bailey, J. Geigel, P. Hu, and A. Kothari. A study
of user intent in immersive smart spaces. In 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pp. 227–232, 2019. doi: 10.1109/PERCOMW.2019
.8730692 2

[48] A. Seeliger, R. Weibel, and S. Feuerriegel. Context-adaptive visual cues for
safe navigation in augmented reality using machine learning. International
Journal of Human-Computer Interaction, pp. 1–21, 09 2022. doi: 10.1080/
10447318.2022.2122114 2

[49] K. Soomro, A. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. CoRR, 12 2012. 4

[50] N. Srivastava, J. Newn, and E. Velloso. Combining low and mid-level
gaze features for desktop activity recognition. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., 2(4), article no. 189, 27 pages, dec 2018.
doi: 10.1145/3287067 2, 3

[51] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
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