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Fig. 1. We propose a gaze-vergence-controlled see-through vision in AR. We build a gaze tracking module with two infrared cameras
and assemble it into the Microsoft HoloLens 2. With our gaze depth estimation algorithm, the user’s gaze depth can be computed from
gaze vergence and used to control see-through vision.

Abstract— Augmented Reality (AR) see-through vision is an interesting research topic since it enables users to see through a wall and
see the occluded objects. Most existing research focuses on the visual effects of see-through vision, while the interaction method is
less studied. However, we argue that using common interaction modalities, e.g., midair click and speech, may not be the optimal way to
control see-through vision. This is because when we want to see through something, it is physically related to our gaze depth/vergence
and thus should be naturally controlled by the eyes. Following this idea, this paper proposes a novel gaze-vergence-controlled (GVC)
see-through vision technique in AR. Since gaze depth is needed, we build a gaze tracking module with two infrared cameras and
the corresponding algorithm and assemble it into the Microsoft HoloLens 2 to achieve gaze depth estimation. We then propose two
different GVC modes for see-through vision to fit different scenarios. Extensive experimental results demonstrate that our gaze depth
estimation is efficient and accurate. By comparing with conventional interaction modalities, our GVC techniques are also shown to be
superior in terms of efficiency and more preferred by users. Finally, we present four example applications of gaze-vergence-controlled
see-through vision.

Index Terms—Augmented Reality, See-through Vision, Gaze Vergence Control, Gaze Depth Estimation

1 INTRODUCTION

Virtual Reality and Augmented Reality (VR & AR) have attracted much
attention from both academia and industry in the past five years. In
particular, with the rise of the meta-verse in recent years, AR and VR are
widely considered the keys to the next generation of the internet [3] [72].
The AR/VR industries continue to climb in market value [1]. These
technologies are also utilized in a large number of applications from
different fields, e.g., games, education and health care [44].

While VR produces immersive virtual worlds generated by computer
graphics, AR technology aims at enhancing the user experience by
seamlessly integrating the virtual objects with the physical world [60].
The big tech giants, e.g., Microsoft and Apple, are also shifting their
focus to AR and trying to apply AR technology in different areas such
as intelligent manufacturing and online retail [2].
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Since AR is able to link the real and virtual worlds, one interesting
application is to expand the user’s vision, such as allowing the user to
see the occluded objects behind a wall, namely see-through vision [52].
The see-through vision has been explored in recent years [46, 55, 56].
Researchers have made efforts to improve the visual effect of see-
through vision in AR [9, 13]. For instance, Avery et al. designed
the Edge Overlay technique to provide depth cues for see-through
vision [10]. Erat et al. presented the user’s view with photorealistic
rendering from a three-dimensional reconstruction of hidden areas [22].

The above works make see-through vision more natural and realistic.
However, the way to interact with see-through vision is less studied.
In fact, see-through vision can significantly benefit from interaction
control, so as to enrich the user experience when using AR Head
Mounted Display (HMD) devices [14, 49]. By intention, the user
can turn on/off see-through vision or show it at a different distance.
However, we argue that using the common interaction modalities, e.g.,
midair click and speech, may not be the optimal way to control see-
through vision. This is because when the user wants to see through a
wall, he needs to think about the corresponding click gesture or speech
command and then execute it. It is not intuitive and requires extra effort
to switch the thinking, which will distract the user’s attention.

Intuitively, the human eye gaze can be a more natural input to control
see-through vision. When we intend to see through something, we are
actually fixating at a new distance, which is physically related to the
gaze depth/vergence. For instance, the gaze depth increases when we
fixate on the occluded objects behind the wall, while it decreases when
we look at the target at a nearer distance.
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Inspired by this observation, a natural idea is to control see-through
vision by gaze depth/vergence. However, it is not easy to use gaze
vergence to control see-through vision in AR HMDs. The problems can
be summarized in three aspects. 1) The mainstream AR devices do not
support gaze depth estimation. For example, the Microsoft HoloLens
2 only offers single gaze ray but does not provide the gaze vergence
or access to eye images [5]. 2) Recent studies using gaze vergence
for interaction are mostly in desktop or VR scenarios [7, 35]. These
methods rely on specific SDKs that cannot be easily adapted to the
AR HMD. 3) There are few works in the literature that discuss how to
flexibly control see-through vision by gaze depth.

To address these issues, our solution contains the following steps:
1) We build a gaze tracking module with two infrared cameras and
assemble it into the Microsoft HoloLens 2, as shown in Fig. 1. 2) We
design two gaze depth estimation methods, which can be easily adapted
to different eye trackers. 3) With our gaze depth estimation algorithm,
we propose two control modes of gaze vergence and apply them to see-
through vision. We also investigate the efficiency of different modalities
by quantitative performance measurements as well as subjective feed-
back. Finally, we demonstrate the gaze-vergence-controlled techniques
with four example applications1.

Overall, our contributions are as follows:

1. Novelty: We propose a Gaze-Vergence-Controlled (GVC) see-
through vision technique in AR, offering new experiences.

2. System Implementation: We customize two eye cameras and
design gaze depth estimation methods for HoloLens 2. We also
show that these methods are accurate and effective for see-through
vision control.

3. Control Modes: We propose two control modes of gaze vergence
for see-through vision, which are called Stimulus-Guided (SG)
see-through mode and Self-Control (SC) see-through mode.

4. Evaluation: We demonstrate the efficiency and usability of our
method through comparison and analysis. Four example applica-
tions of gaze vergence control are presented.

2 RELATED WORK

In this section, we review see-through vision and gaze interaction in
AR and discuss the estimation methods of gaze depth.

2.1 See-Through Vision
Occlusion visualization has been extensively explored in recent years.
Elmqvist et al. reviewed fifty techniques of occlusion management and
classified them into five patterns [21]. We mainly concentrate on two
patterns that are related to our work.

See-through vision. The see-through vision can make the occluding
surface partially transparent to turn objects visible [29,46]. Researchers
have made efforts to improve the visual effect of see-through vision
in AR [9, 13, 25, 30]. For instance, Avery et al. provided see-through
visualization with depth cues when users viewed hidden objects be-
hind walls [10]. Erat et al. synthesized three-dimensional models of
occluded areas for presenting the photorealistic see-through vision.
They also controlled a camera drone to explore the real scene via hand
gestures and gaze direction [22]. Bane et al. presented four interac-
tive tools that allow users to explore see-through vision with different
perspectives [11].

Multi-perspective visualization. The multi-perspective vision is
characterized by transforming an alternative view into the main win-
dow [64, 71]. Prior studies captured occluded regions from the sec-
ondary perspective and integrated them seamlessly into the user’s
view [61, 70]. Lilija et al. compared four different views for occluded
object manipulation [40]. They found see-through vision had the best
performance.

To summarize, previous literature mainly focused on the overlay
effect of hidden areas and occluding layers. However, the interaction
1Project page: https://zhimin-wang.github.io/GVC See Through Vision.html

method is less studied. In fact, the see-through vision can significantly
benefit from the interaction control. According to the intention, the
user can turn on/off see-through vision or show it at a different distance.
However, we argue that using the common interaction modalities, e.g.,
midair click and speech, may not be the optimal way to control the
see-through vision. This is because when we want to see through
something, it is physically related to our gaze depth/vergence and thus
should be naturally controlled by the eyes. Inspired by this fact, we
propose a novel gaze-vergence-controlled see-through vision in AR.

2.2 Gaze Interaction in AR
Interaction techniques aim to improve the user experience, which is
vital for AR HMD devices. With the rise of gaze estimation accuracy
[17, 41, 67], different gaze-based techniques have been explored, such
as gaze dwelling and vergence eye movement.

Gaze dwelling. Most existing works exploit gaze dwelling as the
input technique [37, 62, 66]. For instance, Wang et al. used one second
as the dwell time of selection for gaze-based interaction [65]. However,
such gaze inputs often suffer from the Midas Touch problem [45], where
users unintentionally trigger selections with natural eye movements.

Vergence eye movement. Recent research tried to achieve Midas-
touch-free interaction with vergence eye movement [7,34,35,59,63,68].
For instance, Hirzle et al. controlled the presentation of hidden virtual
content triggered by gaze vergence [27]. Compared with gaze dwelling,
confirming selections via gaze vergence can be clearly distinguished
from random visual skimming of the interface. Therefore, vergence eye
movement has the inherent advantage of addressing the Midas Touch
problem. However, there are few works in the literature that discuss
how to flexibly control see-through vision by gaze depth. To this
end, we propose two control modes of gaze vergence for see-through
vision, which are called Stimulus-Guided (SG) see-through mode and
Self-Control (SC) see-through mode.

2.3 Gaze Depth Estimation
Many studies have investigated how to compute the gaze depth, which
can be broadly classified into two categories: 1) gaze ray-casting meth-
ods and 2) vergence-based methods.

Gaze ray-casting methods. In these methods, the single gaze ray
intersects the first object in the scene, and the intersection is taken as
the 3D Point of Regard (PoR) [42, 69]. The distance between the PoR
and the center of both eyes is defined as the gaze depth. However,
these methods do not deal with the occlusion ambiguity where multiple
objects interact with the gaze ray, as they do not estimate the gaze depth
directly. Therefore, the gaze ray-casting methods are not suitable for
the gaze-vergence-controlled technique.

Vergence-based methods. The gaze vergence will change quickly
when both eyes simultaneously move in opposite directions to fixate
on objects at different depths. The vergence-based methods generally
include indirect and direct methods. These indirect techniques first
compute vergence-related features from near-eye images, e.g., Inter-
pupillary Distance (IPD), and then use them to regress the gaze depth
[43, 48, 50]. For instance, Alt et al. detected the pupil diameter and
IPD to estimate gaze depth and hence enabled gaze-based interaction
with 3D virtual objects [8]. These direct methods obtain the gaze
depth by computing the intersection of the gaze rays from both eyes
[34, 47]. However, it is yet unclear as to which method could achieve
better performance in AR HMD. In this work, we implemented and
compared two widely used methods in HoloLens 2, i.e., 3D line-of-sight
intersection [34] and IPD-based regression [35, 36].

3 SYSTEM DESIGN

3.1 Overview
We propose a novel gaze-vergence-controlled see-through vision in AR.
An overview of our work is shown in Fig. 2. To compute the gaze
depth/vergence, we first design the gaze depth computation module.
This module utilizes two methods to compute gaze depth, which are
the 3D Line-of-sight Intersection (3D LosI) and the Inter-pupillary
Distance (IPD) based regression. Based on the predicted depth, we
further propose two gaze-vergence-controlled modes of see-through

https://zhimin-wang.github.io/GVC_See_Through_Vision.html
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Fig. 2. Overview of our system. We propose the gaze-vergence-controlled see-through vision technique in AR. We first get gaze depth from the
proposed gaze depth estimation algorithm. The red and blue arrows indicate our 3D Line-of-sight Intersection and IPD-based Regression methods,
respectively. With our algorithm, we then design two gaze-vergence-controlled modes of see-through vision. Finally, we capture the hidden scene
using a camera behind the wall. The camera’s view is seamlessly transformed into the user’s view.

vision. One is the Stimulus-Guided (SG) see-through mode and the
other is the Self-Control (SC) see-through mode. Besides the interaction
techniques, we also introduce how to present a natural visual effect of
see-through vision, which reveals the hidden scene.

The rest of this section is organized as follows. 1) We introduce
the gaze depth computation in Section 3.2 including 3D line-of-sight
intersection and IPD-based regression. 2) The two gaze-vergence-
controlled modes of see-through vision are introduced in Section 3.3.
3) We describe the presentation of see-through vision from the hidden
scene in Section 3.4. 4) We finally provide the implementation details
of this system at the end.

3.2 Gaze Depth Computation
The gaze depth is defined as the distance between the user’s PoR and the
center of both eyes. We can compute the PoR using the intersections of
the lines of sight from the left and right eyes. We build a gaze tracking
module with two Near-Infrared (NIR) cameras and assemble it into the
Microsoft HoloLens 2. Here we utilize two gaze depth computation
methods. 1) The first way is to directly compute the 3D intersections
of the lines of sight, as described in Section 3.2.1. 2) The other way
is an implicit model, which takes the IPD as input and regresses the
gaze depth, as presented in Section 3.2.2. The gaze vergence control
combines the two methods, which will be described later in Section 4.

3.2.1 Method 1: 3D Line-of-sight Intersection
The 3D Line-of-sight Intersection (3D LosI) method uses the intersec-
tions of gaze rays from the left and right eyes. Because HoloLens 2 only
provides a single line of sight, we need to modify it to support binocular
gaze estimation. The mainstream strategy is to integrate HoloLens with
the Pupil Labs’ eye tracker and use its software [20, 47]. However, this
method does not calibrate the combined hardware beforehand. Instead,
it merges the transformation between the scene camera and the eye
camera with the kappa angle as a matrix to optimize. The kappa angle
is the angle offset between the optical and visual axes [54]. This way
causes an increase in systematic error [47].

3D Lines of Sight. To improve computation accuracy, our method
is modified from Pupil Labs’ method in two ways: 1) employ the
pupil detection method PuReST [53], which has robust performance to
reflections or partial occlusion; 2) calibrate the hardware in advance and
model the kappa angle. The goal of hardware calibration is to register
the scene camera and eye cameras to a common coordinate system.
A more detailed description of our calibration procedure follows in
Section 3.5.1. The kappa angle is calculated by modeling the angle
offset 𝛼 between the visual and optical axes. The explicit definition

z

Results
Target Presentation

x

Fig. 3. Depth calibration and fitting. Subjects view the calibration scene
consisting of gaze targets that are distributed in depth (left). The com-
parisons among the simulation (dashed black line), the exponential
regression (solid red line), and the polynomial regression (dashed blue
line) of the theoretical relationship between gaze depth and IPD (right).

of the kappa angle helps to compensate for the estimation error. We
finally obtain two lines of sight from the left and right eyes.

Personal Calibration. We design a calibration scene to compute
person-specific kappa angle �̂�, as shown in the left part of Fig. 3. The
gaze targets are displayed at depths between 0.5 m and 5.5 m and the
distance interval in 𝑧 axis direction is 1 m. The duration of each point
is 2 seconds and we only record data during the last second. They are
also scaled to subtend 2° of visual angle at all distances. The movement
directions of peripheral targets at 𝑥-𝑧 plane keep 12.5° with the 𝑧 axis.
The y coordinates are set to the height of the user’s head. We collect
some amounts of pupil data and gaze targets. Finally, we apply a least
squares algorithm to optimize the kappa angle as Chen et al. did [16].

3D Gaze Intersection. After the above two procedures, we obtain
accurate binocular gaze rays. Then we can calculate the intersections
of two gaze rays as the 3D gaze points, using the function denoted as
equation (7.14) in [57]. The gaze depth is the distance from the center
of both eyes to the 3D intersection point.

3.2.2 Method 2: IPD-based Regression
The 3D LosI highly relies on the accuracy of binocular 3D gaze esti-
mation. So it is also important to design a method that is insensitive
to the line of sight. In this section, we introduce a technique that takes
the IPD as input to regress gaze depth. Specifically, we implement two
IPD-based methods: one utilizes the physical-based IPD in Millimeters
(MIPD) to fit gaze depth, and the other uses the image-based IPD in



Pixels (PIPD) to regress the depth.
Compared with previous IPD-based studies, our methods differ in

some aspects. First, prior research was mainly explored in the desktop
environment or virtual reality settings [8, 35], which cannot be easily
adapted to the AR HMD. Our module can be smoothly assembled
with HoloLens 2. Second, we employ the robust pupil detection and
accurate eye model fitting method, which have been demonstrated
with superiority to previous methods [19, 53]. Another difference is the
regression method. Previous research used the support vector regression
or the neural network to learn the mapping from IPD value to gaze
depth [38, 69] while we theoretically verify that exponential regression
is enough for the task.

IPD Value Computation. As indicated above, there are two ways
described as follows. We first perform the following procedure to obtain
the MIPD: 1) Building the physical models of both eyes. We use the
latest proposed 3D eye model fitting method [19], which can mitigate
the effects of corneal refraction and apply the two-sphere eye model.
2) Both eye models are registered to a common coordinate system
according to the calibration parameters of hardware, as described later
in Section 3.5. We assume 𝑝𝑙 and 𝑝𝑟 are the 3D pupil centers of the
left and right eyes. The MIPD is estimated as \1 = ‖𝑝𝑙 − 𝑝𝑟 ‖1. We
then compute the PIPD from each pair of eye images. Let 𝑥𝑙 and 𝑥𝑟 be
the horizontal coordinates of the left and right pupil centers in images.
The resolution of each image is 320×240 pixels. Therefore, the PIPD
can be delivered as \2 = 320− 𝑥𝑙 + 𝑥𝑟 .

Regression for Depth. IPD-based regression needs to build a map-
ping from IPD value to gaze depth. To find an optimal mapping func-
tion, we simulate the relationship between gaze depth and IPD value
theoretically, as the dashed black line shows in the right part of Fig.
3. We set the distance between both eyeball centers as 70 mm and
the radius of the eyeball as 10.39 mm, which are provided by Pupil
Labs [31]. According to the upward trend, we try to fit the simulation
using polynomial and exponential regression. The results demonstrate
that the exponential fitting approximates the theoretical value. It is
similar to the finding by Kwon et al. [36], which used a logarithmic
function to do that. Our regression function can be written as

𝑑 = 𝑘1 · exp
(
𝑘2 ·

(
\ − \̄

) )
+ 𝑘3, \̄ =

1
𝑛

𝑛∑︁
𝑖=1

\𝑖 , (1)

�̂� = argmin
𝐾

{
𝑛∑︁
𝑖=1

(
𝑑𝑖 − 𝑑𝑖

)2
}
, 𝐾 = {𝑘1, 𝑘2, 𝑘3} , (2)

where 𝑑 is the estimated depth value while 𝑑 is the truth value. \ is the
IPD value, and its units can be millimeters or pixels. The \ subtracts
the average value \̄ for accelerating the parameter fitting. 𝑛 is the
number of gaze targets collected in the calibration procedure. �̂� is
the optimal parameter set. We also combine the regression with the
Random Sample Consensus (RANSAC) [23] to discard outliers.

Personal Calibration. We utilize the same calibration scene as
in Section 3.2.1 to compute the parameters �̂�. We split gaze targets
into three sets according to horizontal FOV distributions and fit three
exponential functions, respectively. An example of exponential fitting
is shown in the top center part of Fig. 2. In the prediction period, we
divide horizontal FOV into three sections, which are consistent with
three functions. The gaze depth of each test datum is computed by the
exponential function from the corresponding section.

3.3 Two Control Modes of See-through Vision
Based on the two carefully designed gaze depth computation methods
above, we can successfully obtain the gaze depth. But there is another
equally important matter that is how to control see-through vision by
gaze depth. In this section, we design two different gaze-vergence-
controlled modes. One is the Stimulus-Guided (SG) see-through mode,
and the other is the Self-Control (SC) see-through mode. The character
of the first mode is simple and easy-to-use for users, while the second
mode is more novel and attractive. We can thus choose a more suitable
mode according to the specific application scenarios in AR. To the best
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Fig. 4. Two control modes of gaze vergence when a user looks towards
the occluded surface. (a) Stimulus-guided See-through mode. (b) Self-
control See-through mode.

of our knowledge, there are few works in the literature that discuss how
to flexibly control see-through vision by gaze depth.

Stimulus-Guided (SG) see-through mode. This mode allows users
to trigger see-through vision by looking at a semi-transparent virtual
stimulus behind the wall, as shown in Fig. 4a, which is similar to our
viewing habit. We attempt some variations of the representation with
the purpose of the stimulus being as noninvasive as possible for the user,
e.g., the size and transparency. We finally choose a purple cube with a
length of 10 cm and a transparency of 50%. This cube is attached to the
user’s gaze ray, which is located 6 meters away from the eyes. The user
first stands facing the wall. Then the participant employs the stimulus
as visual guidance, and thus the fixation depth increases for exceeding
the threshold of activation. Finally, the window of see-through vision
is presented at a fixed distance, which helps to keep the PoRs fixated
at a certain distance. More formally, the window position 𝑃window of
see-through vision in R3 is calculated as

𝛾 =

{
𝑤 + 𝑗 · 𝛿, Φ (𝑑) > 𝑤 + 𝛿;
−∞, otherwise,

(3)

𝑃window = 𝑃eye +𝛾 · ®𝐷gaze, (4)

where 𝛾 is the window depth of see-through vision. 𝑤 is the distance
from the user to the wall, while 𝛿 is the distance threshold, as shown
in Fig. 4a. 𝑗 is a scale factor greater than 1. 𝑑 is the estimated depth
value, and Φ (·) is the filter function for data smoothing. 𝑃eye is the
center of both eyes, and ®𝐷gaze is the normal vector of the gaze ray.

In the above-proposed model, some parameters need to be deter-
mined. A natural question arises: how to set reasonable parameters
in practice. We set the range of 𝑤 as (0.5, 3] m. This is because this
distance range is the most commonly used range for daily indoor inter-
action. We call this distance range the middle distance in the context of
our paper, referring to Bardins et al. [12], To increase the robustness
of control, the 𝛿 is determined by the mean and standard deviation of
estimation error (see Section 4 for a more detailed description). We use
the mean filter as the Φ (·) and the time window is empirically set as 1
second [15]. To stabilize the PoRs at a certain distance, we set the scale
factor 𝑗 as 2. In fact, users do not need to know the depth of hidden
objects. The user only needs to try to focus further, and as long as the
gaze depth exceeds 𝑤 + 𝛿, the hidden object is shown. Then the hidden
object will guide the users’ gaze to be stabilized at its depth.

Self-Control (SC) see-through mode. The SC see-through mode
enables the user to freely control vergence eye movement without the
need for a stimulus, as shown in Fig. 4b, which is novel and appealing.
The user first stands 𝑤 meters away from the wall. Then the user needs
to perform a voluntary divergence eye movement to trigger see-through
vision. This action is completed by contracting the extraocular muscles
of the eyes [18]. The range of 𝑤, the distance threshold 𝛿, the time
window of Φ (·), the scale factor 𝑗 , and the computation of window
position 𝑃window are the same as in the first mode.
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Fig. 5. The system architecture of our experimental setup. The system
includes four main hardware components: 1) the customized NIR eye
cameras, 2) the system server, 3) the HoloLens, 4) the surveillance cam-
era. The software components run on the system server and HoloLens.

3.4 Hidden Scene Capture
The flexible control of see-through vision by gaze depth is elaborated
on the last section. We further introduce how to acquire the content of
see-through vision from the hidden scene. Here, we expect see-through
vision to be natural and realistic. For example, the user’s view is
consistent with physical laws, i.e., the presented content consistent with
that the user directly sees the scene without the occluding wall. Besides,
the window of see-through vision naturally follows the gaze direction.
To address these requirements, our solution consists of three steps:
1) To capture hidden scene, we embed a surveillance camera behind
the occluding wall. The camera is first registered to the HoloLens
coordinates. 2) We further compute the Region of Interest (ROI) of
users in the HoloLens space and map the ROI into the camera space. 3)
We finally perform a perspective transformation to transform the image
of ROI into the user’s view in HoloLens. We illustrate these steps as
follows.

Camera Pose Registration. The goal of this step is to register the
camera coordinates to the HoloLens coordinates. We first manually
align a virtual cuboid with a chessboard in AR and then register the cam-
era to the HoloLens space 𝐻 by detecting the chessboard. The width
and length of this cuboid are equal to the size of the chessboard. We
collect 2D pixel coordinates of the chessboard in 𝐶 and 3D coordinates
of the cuboid corners in 𝐻. Finally, we use the Efficient Perspective-n-
Point (EPnP) algorithm [39] to compute the transformation 𝑇 from 𝐻

to 𝐶.
ROI Extraction of Hidden Scene. We naturally control the content

of our see-through vision with eye movement. In short, we compute the
ROI in the camera space 𝐶 and clip the image of the ROI. Specifically,
we first define the 3D PoR as the center of the user’s view (ROI) in 𝐻,
which is a rectangle plane and perpendicular to the gaze ray. Then we
compute the ROI in the camera space 𝐶 by using the transformation 𝑇 .
Finally, we clip the image of ROI from the 2D image space of 𝐶.

Perspective Transformation. The user’s pose is different from the
camera pose. In practice, it causes the viewpoint difference between
them. Therefore, to make the user’s view consistent with physical laws,
we map the image of ROI into the HoloLens space 𝐻. We apply the
perspective transformation method [24] to transform them. For the final
visual effect, please refer to Section 6.

3.5 System Implementation
A detailed overview of our system architecture, including hardware and
software implementation and data flows between them, is shown in Fig.
5. We describe the implementation details as follows.

Hardware Setup. Our main hardware components are as follows:
1) The customized NIR eye cameras for gaze depth estimation are
shown in Fig. 6. The eye cameras capture near-infrared images at 30Hz
with 320× 240 resolution. 2) The server uses an Intel Core i5-8500
with a 3.00Ghz CPU. 3) We use the Microsoft HoloLens 2 as the AR
HMD. 4) One Logitech C9320e camera is used at 30Hz with 800×600
resolution.
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Fig. 6. A hardware calibration setup is used for calibrating the transfor-
mation between the scene camera and the customized eye cameras,
including the two-chessboard pattern 𝐸-𝐺, and another chessboard 𝐹
attached to a mirror.

Hardware calibration. This module is used for calibrating the
transformation between the scene camera and the customized NIR eye
cameras. The hardware calibration is explored by Itoh et al. [28], who
built a five-marker setup and registered these markers to a common
coordinate system. This differs from our approach in that we employ
a two-chessboard pattern and another chessboard attached to a mirror,
as shown in Fig. 6, which is inspired by the mirror-based extrinsic
calibration [58]. We minimize the number of markers, which can
reduce the error caused by unifying different coordinate systems. The
following describes the calibration procedure. 1) The scene camera
detects the virtual image 𝐸 ′ of the chessboard 𝐸 , and we can compute
the pose of 𝐸 ′ in the scene camera coordinate system 𝑆. 2) The scene
camera captures the chessboard 𝐹, and we can obtain the pose of the
mirror in 𝑆. 3) Through the mirror symmetry, we can compute the
pose of 𝐸 in 𝑆. 4) The eye camera captures the chessboard 𝐺 and the
pose of 𝐺 in the eye camera coordinate system 𝑁 is obtained. 5) The
𝐸 and 𝐺 are coplane, and therefore they can be easily registered to a
same coordinate system. Therefore, the 𝑆 and 𝑁 can share the common
coordinate system.

Software Architecture. The software components and data streams
between them are shown in Fig. 5. We use the MessagePack to un/pack
the data [4] and the NetMQ for network communication [6]. We use
Unity 3D for visualization on the HoloLens. The rendering rate on
HoloLens is 60 fps while the frame rate on the system server is 30 fps.

4 QUANTITATIVE EVALUATION OF GAZE DEPTH ESTIMATION

Gaze depth estimation is one of the most important parts of our method,
and therefore we first evaluated the depth accuracy of our proposed
methods, namely 3D LosI, MIPD, and PIPD, described in Section 3.2,
with the Pupil Labs 3D tracker [32]. We recruited 12 subjects from the
campus (9 males and 3 females). The average age of participants is
23.9 (SD = 1.55). Three users had normal vision and nine users wore
glasses. The experiments were conducted in an AR environment.

Design and Procedure. We designed a test scenario for evaluating
these methods, which is similar to the calibration scenario in Section
3.2.2. We first introduced the experimental procedure to the participants.
Then they performed gaze depth calibration as shown in the left part
of Fig. 3. After that, participants began the test phase. In this phase,
the gaze targets will appear 18 times in a random order within the
range of 0.5 to 6 m. The size and duration of targets are the same as
the calibration scenario. We collected pupil data and gaze targets to
compare these methods simultaneously.

Results. We used the absolute difference between the estimated
depth and the truth as an error evaluation metric. Quantitative com-
parison results are shown in Fig. 7 and Table 1, from which we make
the following observations: 1) Overall, the 3D LosI achieves the best



Fig. 7. Mean error comparison of our gaze depth estimation methods
(PIPD, MIPD and 3D LosI) with the Pupil Labs 3D tracker. The standard
deviation is not annotated in this figure for clear comparison.

Table 1. The error of depth estimation (m). The first row represents the
distance range. The second to fifth rows include the mean of the error
and its standard deviation.

Distance (0.5, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]
PIPD 0.3±0.3 0.7±0.5 0.9±0.4 1.0±0.5 1.2±0.3 1.5±0.5
MIPD 0.8±1.2 1.1±0.7 1.4±0.8 1.3±0.5 1.4±0.7 1.6±0.6

3D LosI 0.2±0.1 0.6±0.4 1.3±0.9 1.8±0.7 1.9±0.4 2.1±0.4
Pupil Labs 0.3±0.2 0.8±0.5 1.4±0.7 2.2±0.6 2.6±0.5 2.5±0.4

performance in the range of (0.5, 2] m (error = 0.41±0.34 m), while
the PIPD outperforms the other methods at the (2, 6] m (1.14±0.49 m).
2) Our 3D LosI (1.32±0.88 m) surpasses the Pupil Labs 3D Tracker
(1.63± 1.01 m) in all range of (0.5, 6] m. 3) We found the MIPD
method has the highest error in the range of (0.5, 2] m (0.94±1.03 m)
due to two outliers.

Discussion. We discuss our results in three aspects. 1) The 3D LosI
method slightly outperforms the PIPD at (0.5, 2] m. However, the error
tends to increase abruptly with a slope of 0.6 at (2, 4] m. We argue
that this is because after gaze depth exceeds 2 m, the accuracy of 3D
LosI cannot meet the requirement that this method needs to correctly
discriminate 1° vergence difference between 2 m and 4 m distance.
2) To overcome the above limitation, we build an optimal piecewise
function for the gaze vergence control. Specifically, if the result of
PIPD is in the range of (0.5, 2] m, we use the output of 3D LosI;
otherwise, we still utilize the PIPD to estimate depth. We demonstrate
that this piecewise function works efficiently for GVC techniques in
the following section. 3) Our primary goal is to use the gaze vergence
to perform daily indoor interaction within the middle distance, i.e., (0.5,
3] m, as illustrated in Section 3.3. The gaze depth estimation error is
0.57±0.44 m as predicted by the piecewise function. To increase the
error-tolerant rate of the GVC techniques, we use the distance threshold
𝛿 as described in Section 3.3, which is set as the sum of mean error and
standard deviation at each distance.

5 COMPARISONS OF INTERACTION MODALITIES FOR SEE-
THROUGH VISION CONTROL

The primary goal of this section is to evaluate and compare the Gaze-
Vergence-Controlled (GVC) techniques with two common modalities
in AR see-through vision. There are few works in the literature that
discuss how to control see-through vision by gaze depth in a flex-
ible manner. We also want to know whether the GVC techniques
have advantages over other modalities. To this end, we implement
Stimulus-Guided Gaze (SGGaze) and Self-Control Gaze (SCGaze) and
two conventional interactions, i.e., midair click technique (Click) and
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Fig. 8. The setting of see-through vision and the illustrations of four
techniques. (a) The user employs four interaction modalities to control
the see-through vision. 𝑤 represents the distance between the user and
the wall. (b) Midair click technique (Click). (c) Speech-based technique
(Speech). (d) Stimulus-guided Gaze (SGGaze) and Self-control Gaze
(SCGaze).
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Fig. 9. Left: Boxplots of completion time of four modalities. Right:
Boxplots of the number of successes of four modalities. The statistical
significance is labeled with ** (p <0.05). Error bars mean standard
deviations. The little colored circles indicate the outliers. There is no
statistically significant difference in the number of successes.

speech-based technique (Speech). We propose two hypotheses:
H1: Controlling see-through vision has higher efficiency and usability
with the GVC techniques than using Click and Speech within the middle
distance.
H2: Controlling see-through vision is more intuitive and attractive with
the GVC techniques than using Click and Speech within the middle
distance.

5.1 Participants and Task
We recruited 20 subjects from the campus (12 males and 8 females).
The average age of participants is 24 (SD = 1.6). The pre-study ques-
tionnaire with 5-point Likert scales shows the participants have low
prior familiarity with AR (Mean = 2.9), the eye tracker (Mean = 2.9),
medium familiarity with speech-based inputs (Mean = 3.4), and high
familiarity with button-based interaction (Mean = 4.2). All users can
read and speak English fluently.

The task requires participants to control the visualization of occluded
areas according to operating commands. In each trial, the distances
between users and the wall are randomly chosen as 1, 2, or 3 m. Specif-
ically, the user first views the objects attached to a wall. Then the user
should do the following steps: 1) When the AR HMD displays the “See
Through Wall”, the user tries to see through the wall using different
modalities: clicking the “Check” button, saying “See Through Wall” or
increasing the gaze depth. 2) Once the system shows the “See Wall”,
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Fig. 10. The user preference ranking of four interaction modalities. The
SCGaze is the most preferred bu the users.

the participant does the opposite operations to close the see-through
vision using four techniques. After each command is successfully per-
formed, the user needs to keep the same state for 5 seconds and wait
for the next command (called the waiting state later in Section 5.5.1).
The user is required to repeat the above two steps five times.

5.2 Interaction Modalities
Midair Click Technique. The user employs index finger to touch the
“Check” or “Uncheck” button for controlling see-through vision, see
Fig. 8b. This technique is independent of the distance between users
and the wall. Therefore, we evaluate it at a distance of 1 m.

Speech-based Technique. The participant uses the verbal command
“See Through Wall” to see the occluded regions and says “See Wall”
to turn off the see-through vision, see Fig. 8c. This modality is also
unrelated to the distance and thus tested at a distance of 1 m.

The 𝑆𝐺𝐺𝑎𝑧𝑒 and 𝑆𝐶𝐺𝑎𝑧𝑒 techniques are implemented as described
in Section 3.3, which is shown in Fig. 8d. Our goal is to use the GVC
techniques in daily indoor interaction within the middle distance, i.e.,
(0.5, 3] m. Therefore, we set the distance as 1, 2, and 3 m. We aim to
explore whether different distances have an influence on performance.

5.3 Evaluation Metrics
Performance Measures. We employ three objective metrics to capture
user performance: completion time, the number of successes, and the
number of mistakes. Completion time is the time elapsed between
when the operating command is displayed and when see-through vision
is triggered or closed correctly. The number of successes is the number
of times that the user triggers the corresponding operations successfully
in 10 seconds. We count the number of mistakes as the number of
times that the participant unintentionally triggers false commands in
the waiting state.

Subjective Measures. Our subjective metrics describe the usability
of four modalities. After finishing the task with one technique, users fill
in the NASA’s Task Load Index [26] with 7-point Likert scales. Then
they answer six free-response questions to report the naturalness and
frustration of each modality. Upon the completion of all trials, they
fill out a preference ranking questionnaire to rank all the modalities
according to overall preference.

5.4 Experimental Procedure
The participants first filled in a pre-study questionnaire. Then they
began a training phase where they were given visual and auditory in-
structions and practiced using different modalities. After training, they
performed the experiments, including one task using four techniques
and four questionnaires. The four interaction modalities were presented
in random order. Each common modality was tested at a distance of 1 m.
Each GVC technique ran a complete process for three distances. Users
were required to rest for 30 seconds after each process to counteract the
effects of fatigue. Finally, the participants filled out the preference rank-
ing questionnaire. Prior to each section associated with gaze vergence,
the users conducted gaze depth calibration as described in Section 3.2.1.
For a fair comparison, the “See-through Wall” command was shown
at the location of the wall, while the “See Wall” was displayed 0.5 m

in front of the see-through vision window. Such a setting ensures that
the change of gaze vergence will not happen ahead of time. Overall,
per subject performed 80 (= (2 techniques × 1 distance + 2 techniques
× 3 distances) × 2 steps × 5 repetitions) trials. Each experiment took
around 70 min.

5.5 Results

5.5.1 Objective Evaluation Results

Completion Time. We conducted repeated-measures ANOVAs (𝛼 =

0.05) and post hoc pairwise t-tests to judge whether the average com-
pletion time is significantly different across modalities. For each GVC
technique, we computed the average completion time of three distances.
The results are shown in the left part of Fig. 9. The statistical analysis
indicated that the effect of four modalities on completion time was
statistically significant (𝐹(3, 57) = 37.662, 𝑝 < 0.001, [2 = 0.665). We
found that SGGaze was significantly faster than Click and Speech (p <
0.001, 0.001). Besides, SCGaze was also significantly faster than the
two common modalities (p < 0.001, 0.001). In order to get convincing
results, we also compared the GVC techniques at distances where users
spent the longest completion time with Click and Speech. We found
that the aforementioned significant difference still existed.

The left part of Fig. 12 shows the completion time of each GVC
modality at 1, 2, and 3 m distances. There is no significant difference
between SGGaze and SCGaze. We saw that the completion time of
both GVC techniques gradually decreased as the distances increased.
This was expected because the change of gaze depth at the near range
requires a larger rotation amplitude of the eyeballs, which results in
taking longer time, while the far range did the opposite.

The number of successes. We performed a repeated-measures
ANOVA (𝛼 = 0.05) to identify whether the number of successes is
significantly different across modalities. The result is shown in the
right part of Fig. 9. We found it failed to reject the equality of the
levels of modalities on the number of successes (𝐹(3, 57) = 1.243, 𝑝
= 0.301, [2 = 0.061). The middle part of Fig. 12 plotted the average
number of successes of two GVC modalities averaged across subjects.
We found that this metric was invariant to the distance. Overall, these
results indicated that users can almost finish the correct operations at
the assigned time.

The number of mistakes. We define the false triggering in the
waiting state as the mistake mentioned before. It did not occur to the
Click and Speech in the waiting state. We counted the average number
of mistakes made by GVC techniques across users at three distances,
as shown in the right part of Fig. 12. As expected, the number of
mistakes increased with increasing distances. This is because when
gaze depth increases exponentially, the accuracy decreases accordingly.
We also found no significant effect of the two GVC techniques on the
number of mistakes (𝐹(2, 76) = 0.710, 𝑝 = 0.495, [2 = 0.018) but the
average values of 𝑆𝐺𝐺𝑎𝑧𝑒 are higher than those of 𝑆𝐶𝐺𝑎𝑧𝑒 at all three
distances. The reason for this difference could be that the stimulus of
𝑆𝐺𝐺𝑎𝑧𝑒 distracted the users’ attention, which was reported by some
users. We plan to minimize the transparency of the stimulus to reduce
the distraction in the future.

5.5.2 Subjective Evaluation Results

Task Load. Repeated-measures ANOVA on the NASA TLX question-
naire demonstrated that four modalities had a significant difference in
mental/physical demand. The post hoc pairwise t-tests between the
modalities were shown in Fig. 11. In general, the Click achieved the
highest mental/physical demand than all the other techniques. Users
generally placed the buttons next to their hands. According to the
free response, some participants found that clicking buttons required
them to look down frequently, which distracted them and degraded the
user experience. We also observed that the Speech had lower mental
demand than the SCGaze. A few participants reported that they are
more familiar with speech-based input than with gaze vergence control.
They felt a little nervous when using GVC techniques at the beginning.
There is no significant difference in terms of other task loads.
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User preference. According to the results of the preference rank-
ing questionnaire, the SCGaze is the most preferred by the users, as
shown in Fig. 10. 60% of participants believed SCGaze ranked first in
terms of preference, 30% of users preferred SGGaze the most, and two
participants liked the speech-based technique the most.

5.6 Discussion
In this section, we discuss and summarize the results for validating the
hypotheses.
H1: Controlling see-through vision has higher efficiency and usability
with the GVC techniques than using Click and Speech within the middle
distance.

Our results supported this hypothesis. In terms of speed, SGGaze
outperformed Click and Speech; SCGaze was also superior to both
common techniques. Besides, user’s feedback also supposed that “Con-
trolling see-through vision by looking closer or far away rarely requires
response time” (P11). For accuracy, although the GVC techniques
occasionally occurred with false triggering caused by the accuracy of
depth estimation, the number of successes was still not affected.

In terms of usability, we thought that using gaze vergence to control
see-through vision was convenient and easy to use. “After simple
training, it is relatively simple and has no mental fatigue.” (P2) “I feel
relaxed using it.” (P7) Users reported that “I feel arm fatigue after
Click” (P3). Some participants claimed that “ the speech command
needs to speak aloud to trigger the switch, which is not convenient
in a quiet space” (P4). We believed that the GVC techniques tackled
the limitations of Click and Speech and improved the user experience.
It freed both hands and users did not need to look away. It can also
be done without making sounds. P6 and P10 had similar feelings.
The above analysis accounts for the superior performance of GVC
techniques.
H2: Controlling see-through vision is more intuitive and attractive with
the GVC techniques than using Click and Speech within the middle
distance.

Our results supported this hypothesis. We validated it in two aspects.
1) With regard to user preference, 60% of users preferred SCGaze and
30% of participants ranked SGGaze first. Most of the participants found

SGGaze and SCGaze to be enjoyable, e.g., “It is amazing. I have been
looking in the same direction, but the change of vergence can convey a
signal of seeing through the wall, which is a novel experience for me”
(P16). 2) In terms of naturalness, the GVC techniques take advantage
of our viewing habit, as when we want to see through something, it
is physically associated with our gaze depth/vergence, and therefore
should be naturally controlled by the eyes. In contrast, Click needs
to interrupt the user experience and ask them to look down to press a
button. Speech requires the participants to repeat boring commands.
P4 and P7 also expressed similar opinions. To summarize, we believed
that the gaze-vergence-controlled see-through vision is more appealing
and intuitive than the common interaction modalities.

6 EXAMPLES FOR GAZE VERGENCE CONTROL

In this section, we demonstrate the GVC technique with four example
applications, which can give insights and implications for designers.
For more details, please refer to the supplemental video.

See Through a Wall via Gaze Vergence Control. We show how
to see through an office wall using the proposed SCGaze technique, as
shown in Fig. 13a. The user is immersed in the occluded environment
with a first-person view and naturally controls the see-through vision
with his eyes. In this example, one surveillance camera is attached to
the inner wall of an office. The user stands 1 meter away from the wall.
When the user fixates on the wall, no see-through vision is activated.
When gaze vergence reaches the target depth, see-through vision is
triggered. The user sees the television and the moving scene through
see-through vision. The user’s view is consistent with physical laws.

See Through an Object via Gaze Vergence Control. The second
example enables the user to see through daily indoor objects, e.g., a
television, with the SCGaze modality, as shown in Fig. 13b. This
indicates that we can naturally make daily life objects invisible and thus
expand our vision. In this example, the participant can see the person
through the television. The user is 2 m away from the television and 4.5
m away from the person. When the gaze vergence reaches the depth of
the person, the see-through vision is activated. The vision window also
helps to keep the eyes focused at a certain distance. Then the user’s
gaze is put on the television and there is no see-through effect.
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Fig. 13. We present three examples to provide the implications for researchers. (a) See through a wall via gaze vergence control. (b) See through an
object via gaze vergence control. (c) 3D virtual object display triggered by gaze vergence.

3D Virtual Object Display Triggered by Gaze Vergence. Our
third example shows that the GVC technique can control the display of
additional information about a real object of interest. This is potentially
an effective channel in maintaining or learning scenarios, e.g., opening
the menu when both hands are occupied [33, 51]. We implement a 3D
virtual earth display triggered by gaze vergence, as shown in Fig. 13c.
In this example, we do not see through but rather see in front. When the
gaze target is on the wall, the user sees a real poster, which is located 2
m away from him. Then the user controls the gaze vergence to fixate
0.5 m in front of the wall. As a result, a 3D virtual earth is shown at
the fixation position.

See Through Multiple Occluding Objects via Gaze Vergence
Control. Our final example shows that the user can see through mul-
tiple occluding objects with the vergence control and switch between
four layers of different depths. We set 4 layers in this demo: (0, 0.6] m
centered at 0.3 m, (0.6, 1.4] m @ 1.0 m, (1.4, 3.0] m @ 2.2 m and (3.0
m, +∞) @ 4.5 m. When the gaze vergence reaches the depth of each
layer, the image of each layer is shown in turn. When the user’s gaze
depth decreases, the see-through vision switches to the front layers and
eventually comes back to the first layer. Please see our supplemental
video for more details.

7 DESIGN IMPLICATIONS

Based on the results and observations of our study, we derive a set of
guidelines and implications for the design of gaze-vergence controlled
techniques in AR.

• Our results demonstrate that the proposed 3D LosI and PIPD methods
perform differently in the range of (0.5, 6] m. We suggest that for the
gaze depth estimation in the range of (0.5, 2] m, the Gaze-Vergence-
Controlled (GVC) techniques can utilize the 3D LosI method. For a
depth beyond 2 m, the PIPD method can be used.

• Providing an error-tolerant design for the GVC see-through vision
can increase its robustness. We suggest setting a distance threshold
for the control. Considering the depth estimation error, we use
the sum of mean error and standard deviation as the threshold at
each distance. Besides, we recommend using a filter function for
smoothing depth values.

• The window of see-through vision should be fixed at a certain dis-
tance, which helps prevent the window drifting due to gaze error and
stabilizes user’s gaze depth to avoid frequent gaze adjustment. Mean-
while, the fixed window depth also avoids causing visual fatigue.

• During our experiments, we found that divergence movement can in
fact be successfully performed but cannot last long. This is because
the fixation points fall behind a wall in an instant, but they cannot
be fixed without stimulus and thus come back to the wall plane
quickly. Fortunately, the mechanism of our SCGaze can help avoid
this problem. Our system can rapidly capture the instant change
of vergence and activate see-through vision. The window of see-
through vision can serve as a stimulus to help stabilize the user’s
vergence.

8 SYSTEM LIMITATIONS AND FUTURE WORK

The GVC techniques have higher efficiency and usability than using
𝐶𝑙𝑖𝑐𝑘 and 𝑆𝑝𝑒𝑒𝑐ℎ for controlling the see-through vision within the
middle distance. However, when the distance exceeds 3 m, it is dif-
ficult to discriminate the vergence difference as described in Section
4. Therefore, for long-distance interaction (>3 m), we can use the
modality independent of the distance, e.g., speech-based technique.

In the future, we will design and implement a shared see-through
vision between multiple users controlled by gaze vergence. In the
current setting, we embedded a surveillance camera behind the wall
to achieve see-through vision. For different users staying in adjacent
rooms, we plan to enable them to wear a HoloLens 2. We can thus
obtain images from the scene camera of each HoloLens. Each user
can use gaze depth to trigger the see-through vision. The images are
captured by different devices in adjacent rooms.

9 CONCLUSION

In this work, we proposed using the gaze-vergence-controlled see-
though vision in AR. We first built a gaze tracking module with two
infrared cameras and assembled it into the Microsoft HoloLens 2. With
our gaze depth estimation algorithm, the user’ gaze depth can be com-
puted from gaze vergence and used to control the see-through vision.
We evaluated the efficiency and usability of four interaction techniques.
Experimental results demonstrated that gaze depth estimation is effi-
cient and accurate. It showed that the GVC techniques are superior in
terms of efficiency and more preferred by users. We also showed four
example applications of GVC see-through vision.
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