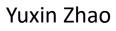
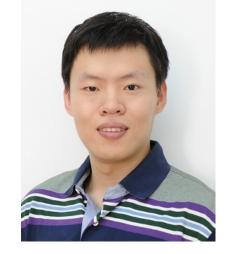
ISMAR 2021: Edge-Guided Near-Eye Image Analysis for Head Mounted Displays

Zhimin Wang¹, Yuxin Zhao¹, Yunfei Liu¹, Feng Lu^{1,2}
1 State Key Laboratory of VR Technology and Systems, School of CSE, Beihang University
2 Peng Cheng Laboratory, Shenzhen, China




Authors

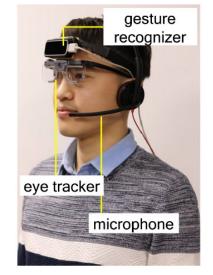
Zhimin Wang

Yunfei Liu

Feng Lu

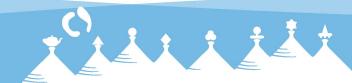
Outline

- Background
- Related Work
- Our Method
- Experiments
- Future Work



Background

Eye tracking has been used in many applications.



Foveated rendering [Meng et al. 2020] Redirected Walking [Langbehn et al. 2018]

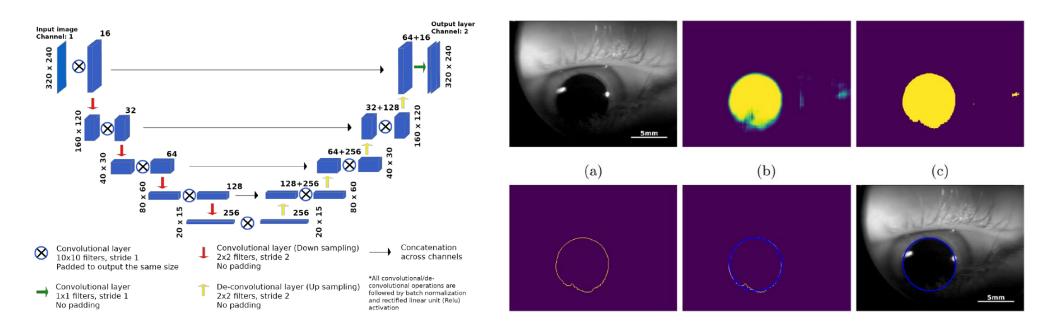
Gaze-based Interaction [Wang et al. 2020]

Behavior Analysis [Lang et al. 2018]

Related Work

Eye tracking methods need to compute gaze-relative features, from infrared (IR) eye images.

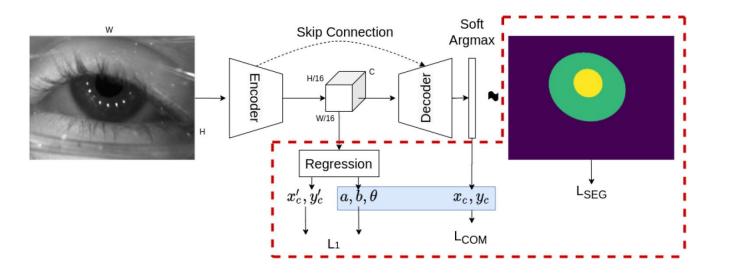
Gaze-relative Features	Methods
Pupil Center	Guestrin et al. 2014, NVGaze, Lu et al. 2020
Pupil Ellipse	Else, Pure, DeepVOG, RITNet, EllSeg
Iris Ellipse	Hansen et al. 2005, RITNet, EllSeg



Related Work

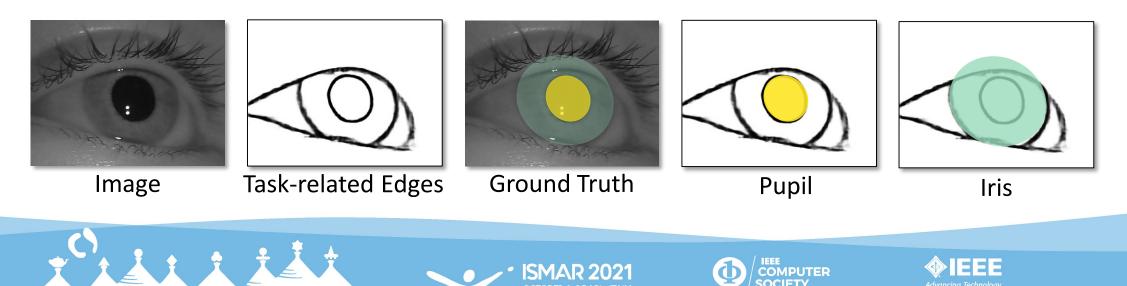
- DeepVOG: uses the U-Net to segment out the pupil area.
- Fit an ellipse on the segmentation map.

Y.-H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. Zu Eulenburg, and S.-A. Ahmadi. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. Journal of neuroscience methods, 324:108307, 2019.



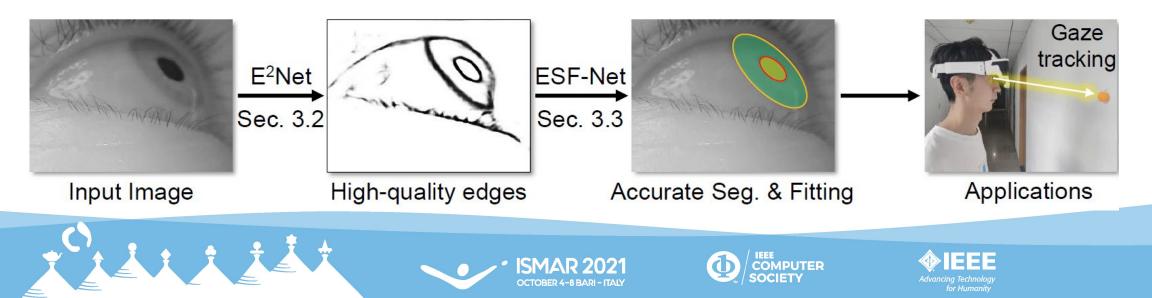
Related Work

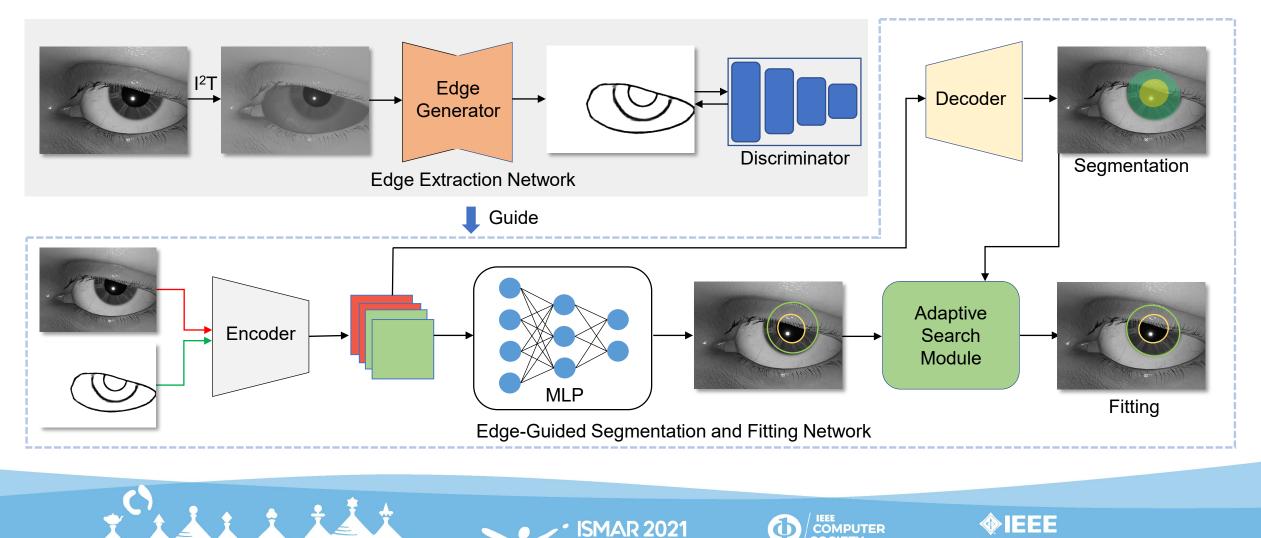
- EllSeg: segments out complete pupil and iris structures
- Robust to occlusions
- Improved ellipse estimates as compared to segmenting eye parts


R. S. Kothari, A. K. Chaudhary, R. J. Bailey, J. B. Pelz, and G. J. Diaz. Ellseg: An ellipse segmentation framework for robust gaze tracking. IEEE TVCG, 27(5):2757–2767, 2021.

IDUITER

Motivation

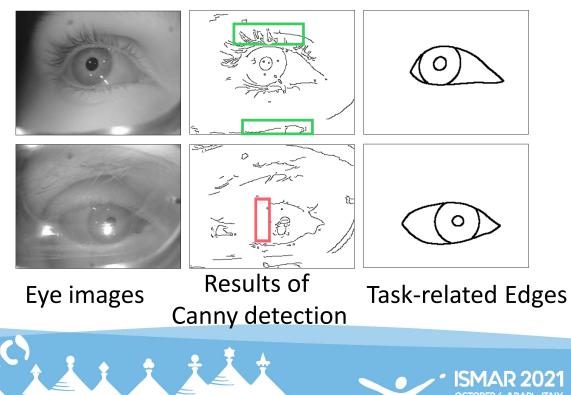

- Most discriminate information in the eye image is encoded in certain edge areas, including two eyelids, pupil contour and iris contour. We call it task-related edges.
- The intersection of these contours exactly corresponds to the ellipse of the pupil and iris.



Overview

- We propose a novel near-eye image analysis method with edge maps as guidance.
- We first utilize an Edge Extraction Network (E2-Net) to predict high-quality edge maps, which only contain eyelids and iris/pupil contours without other undesired edges.
- Then we feed the edge maps into an Edge-Guided Segmentation and Fitting Network (ESF-Net) for accurate segmentation and ellipse fitting.

Pipeline


OCTOBER 4-8 BARI - ITALY

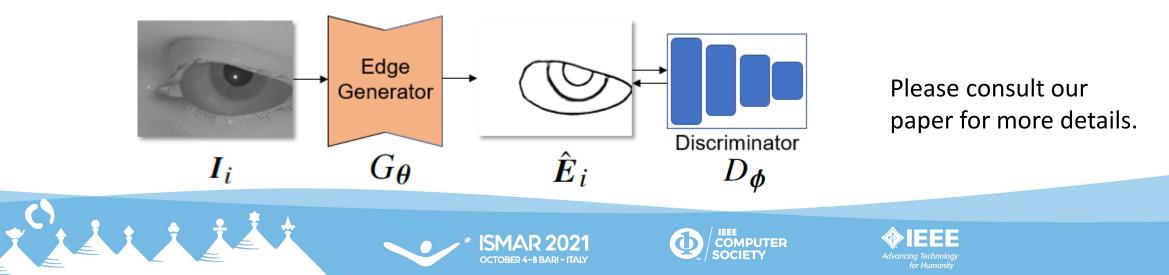
SOCIETY

Edge Extraction Network(E²-Net)

Challenge:

- To eliminate task-unrelated edges;
- To complete task-related edges.

- The edges in green boxes represent taskunrelated edges.
- We try to eliminate task-unrelated edges and restore the lost edges in red box.

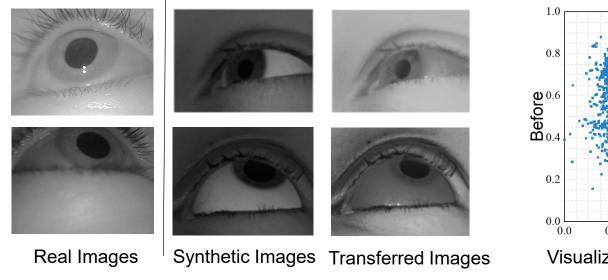

Edge Extraction Network(E²-Net)

E²-Net contains an edge generator G and a discriminator D

Loss functions:

$$\mathcal{L}_{G}(\boldsymbol{\theta}) = \alpha \sum \ell_{\text{bce}} \left(\hat{\boldsymbol{E}}_{i}, \boldsymbol{E}_{i} \right) + \beta \sum \ell_{\text{pure}} \left(\boldsymbol{\theta}; \boldsymbol{I}_{i} \right), \ \ell_{\text{pure}}(\boldsymbol{\theta}; \boldsymbol{I}_{i}) = \left(D_{\boldsymbol{\phi}}(\boldsymbol{R}_{\boldsymbol{\theta}}(\boldsymbol{I}_{i})) - 1 \right)^{2} = \left(D_{\boldsymbol{\phi}}(\hat{\boldsymbol{E}}_{i}) - 1 \right)^{2}.$$

$$\mathcal{L}_{D}(\boldsymbol{\phi}) = \sum \left(D_{\boldsymbol{\phi}} \left(\boldsymbol{E}_{i} \right) - 1 \right)^{2} + \sum \left(D_{\boldsymbol{\phi}}(\hat{\boldsymbol{E}}_{i}) \right)^{2}.$$


 $\ell_{\rm bce}$ is the binary cross-entropy loss, lpha and eta are fixed weight parameters.

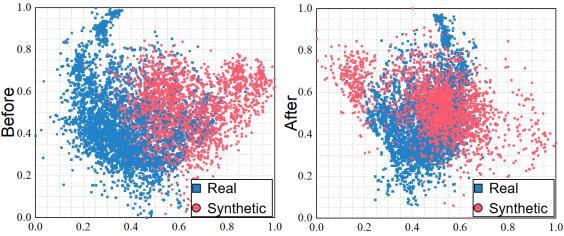


Image Intensity Transfer (I²T)

- Synthetic datasets have abundant eye images and accurate labels.
- There is large difference between the real and synthetic images.
- We propose the I²T method for producing realistic images from synthetic images.

Visualization of real and synthetic images in 2-D space vis t-SNE

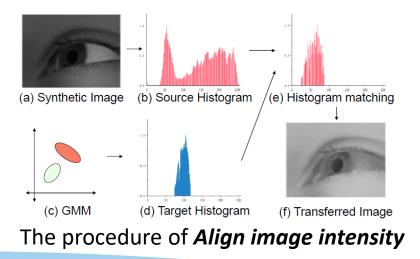
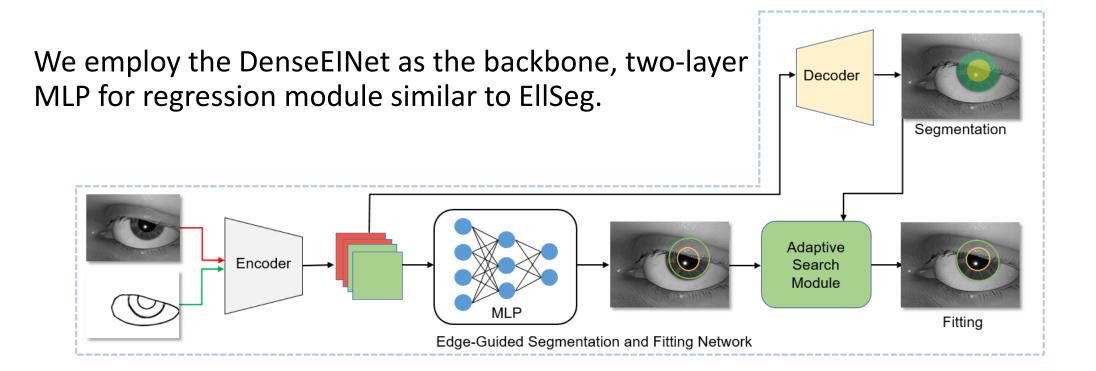
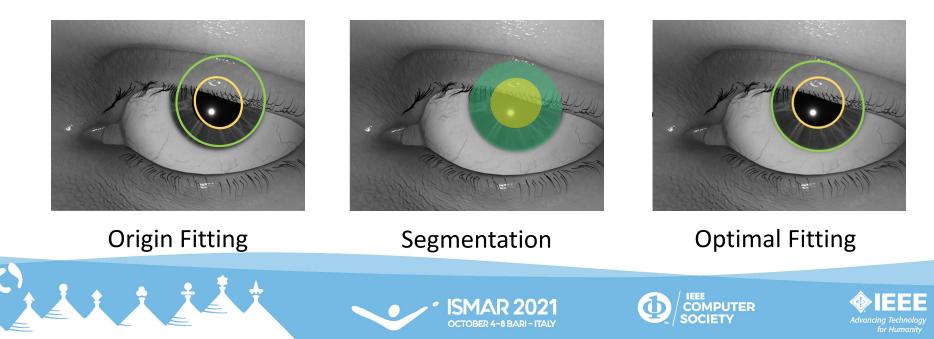


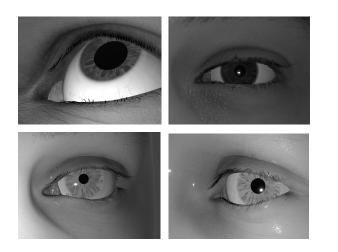
Image Intensity Transfer (I²T)

- Sample data: Sample 10000 images from four real near-eye datasets.
- **Compute histogram:** Divide each image into three subregions which respectively contain 1) iris and sclera, 2) skin, and 3) pupil. Then calculate the intensity histogram of each subregion.
- *Fit mixture gaussian distributions:* Fit three mixture gaussian distributions (GMM) which corresponds to the distributions of three subregion histograms.
- Align image intensity: Employ the histogram matching algorithm and perform a mapping that transforms intensities of the source image towards the target.



Edge-Guided Segmentation and Fitting Network (ESF-Net)





Adaptive Search Module(ASM)

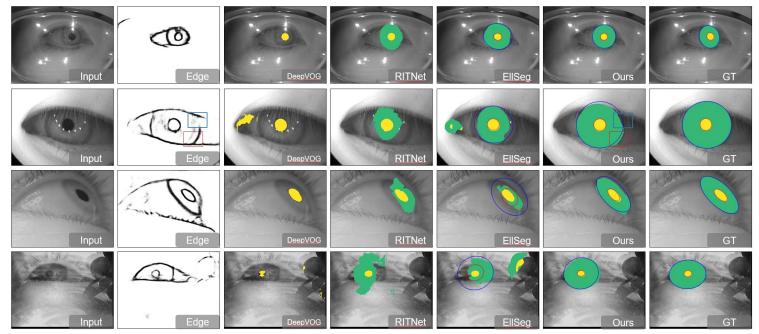
- Motivation: The regressed parameters usually are inaccurate.
- ASM searches the optimal ellipse on the guidance of segmentation maps
- Goal : Maximize the value of IoU between segmentation map and the ellipse form by parameters.

- Train networks on synthetic dataset
- Evaluation on four publicly real datasets and customized AR HMD
- Compared methods: DeepVOG, RITNet, EllSeg

Sample images from RIT-Eyes dataset

Dataset	Source	Purpose	Image Count	Sample Count	
RITEyes- General	Synthetic	Train	45516	45516	
NVGaze- AR*	AR HMD	Test	2265127	11051	
OpenEDS	VR HMD	Test	11202	11200	
LPW*	Head-mounted Eye tracker	Test	130856	10865	
Fuhl*	Head-mounted Eye tracker	Test	5665053	11197	

Summary of train and test datasets


• Quantitative comparison between DeepVOG, RITNet, EllSeg and our methods (along rows) in four public datasets.

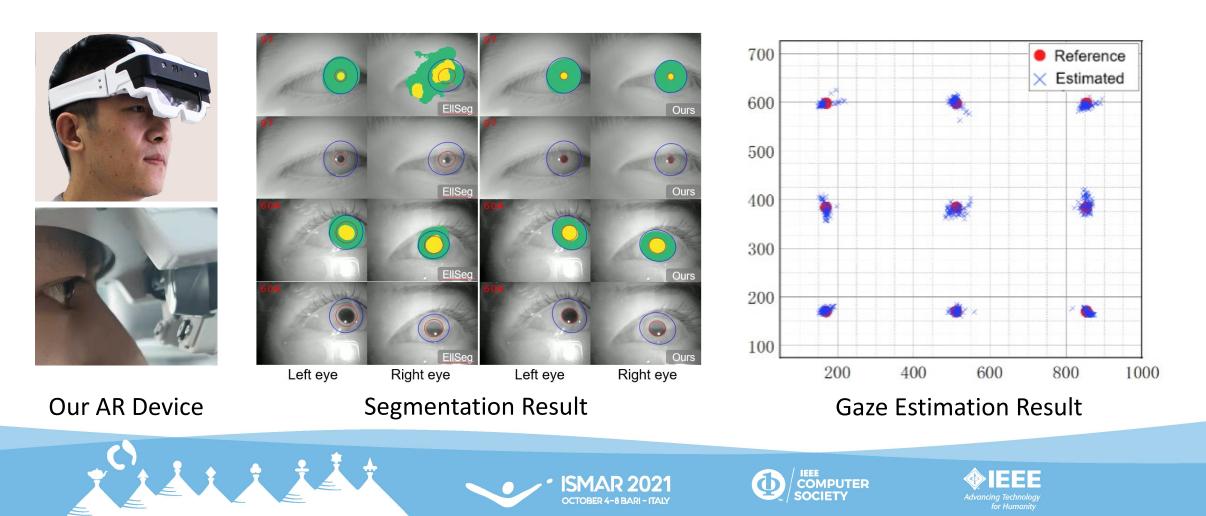
Metric Model	IoU _{pupil} ↑	IoU _{iris} ↑	PE _{pupil} ↓	PE _{iris} ↓	BIoU _{pupil} ↑	BIoU _{iris} ↑	IoU _{pupil} ↑	IoU _{iris} ↑	PE _{pupil} ↓	PE _{iris} ↓	BIoU _{pupil} ↑	BIoU _{iris} ↑
Benchmark	LPW						NVGaze					
DeepVOG	0.833	-	4.66	-	-	-	0.867	-	1.23	-	-	-
RITNet	0.822	0.509	7.47	12.28	-	-	0.881	0.773	1.85	3.66	-	-
EllSeg	0.876	0.527	5.17	12.29	0.679	0.622	0.878	0.758	1.25	3.21	0.758	0.718
Ours (E)	0.885	0.689	4.41	11.84	0.780	0.700	0.890	0.814	1.24	2.90	0.765	0.747
Ours (E+I)	0.896	0.688	3.68	10.27	0.762	0.745	0.884	0.812	1.20	3.24	0.763	0.745
Benchmark	OpenEDS					Fuhl						
DeepVOG	0.890	-	1.41	-	-	-	0.856	-	4.38	-	-	-
RITNet	0.889	0.611	2.41	6.24	-	-	0.862	0.718	5.09	7.91	-	-
EllSeg	0.921	0.740	1.39	5.32	0.799	0.727	0.893	0.737	3.70	8.02	0.778	0.739
Ours (E)	0.915	0.850	1.44	6.06	0.810	0.778	0.893	0.795	2.84	7.63	0.790	0.750
Ours (E+I)	0.925	0.821	1.27	5.40	0.813	0.780	0.904	0.813	2.80	7.25	0.800	0.780

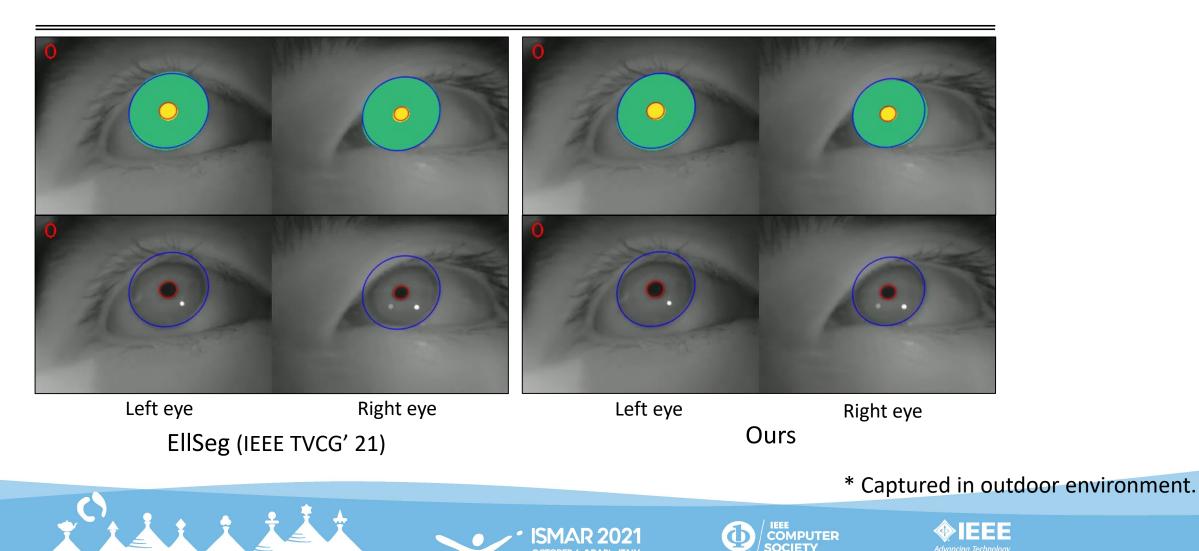
Ours (E) means the result of ESF-Net that only inputs edge maps.

Ours (E+I) means the result of ESF-Net that combines images with edge maps.

- Visual comparisons of segmentation and fitting results.
- Under the guidance of the task-related edge, our model 1) smooths the contour of segmentation map 2) produces more accurate ellipse shape 3) is robust with disturbances.

Results in four public datasets





- Assessed our model in customized AR device.
- Implemented the 2D gaze estimation task in the AR device, achieving 0.38° accuracy.

• Segmentation and fitting results on our customized AR device. (Binocular)

OCTOBER 4-8 BARI - ITAL

Future Work

- Conduct more online tests with the AR device in real time.
- Optimize our network by knowledge distillation.
- Fit 3D eye model based segmentation and fitting results by our method, which can mitigate the effect of device slippage and improve the stability of gaze estimation.

Our work: https://github.com/zhaoyuhsin/Edge-Guided-Near-Eye-Image-Analysis

Thank you for your time and interest in our work!