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Figure 1: To improve the accuracy of eye tracking in AR, we propose a novel eye segmentation and fitting method that estimates
pupil and iris parameters on the guidance of task-related edges. We train networks on synthetic datasets. Then we evaluate them on
publicly available real datasets and customized AR Head Mounted Display (HMD) devices. The results show our methods outperform

current state-of-the-art methods.

ABSTRACT

Eye tracking provides an effective way for interaction in Augmented
Reality (AR) Head Mounted Displays (HMDs). Current eye track-
ing techniques for AR HMDs require eye segmentation and ellipse
fitting under near-infrared illumination. However, due to the low
contrast between sclera and iris regions and unpredictable reflections,
it is still challenging to accomplish accurate iris/pupil segmentation
and the corresponding ellipse fitting tasks. In this paper, inspired
by the fact that most essential information is encoded in the edge
areas, we propose a novel near-eye image analysis method with edge
maps as guidance. Specifically, we first utilize an Edge Extraction
Network (E2-Net) to predict high-quality edge maps, which only
contain eyelids and iris/pupil contours without other undesired edges.
Then we feed the edge maps into an Edge-Guided Segmentation
and Fitting Network (ESF-Net) for accurate segmentation and el-
lipse fitting. Extensive experimental results demonstrate that our
method outperforms current state-of-the-art methods in near-eye
image segmentation and ellipse fitting tasks, based on which we
present applications of eye tracking with AR HMD.

Index Terms: Augmented Reality—Eye tracking—Near-eye im-
age analysis—Edge Extraction; Human Computer Interaction (HCI)

1 INTRODUCTION

Interaction techniques seek to enrich the user experiences, which is
important when using Augmented Reality (AR) Head Mounted Dis-
play (HMD) devices [30]. Among different interaction techniques,
eye gaze tracking requires less physical demand, and provides more
natural experience, thus is potentially an effective channel in AR
HMDs. More recent efforts have focused on taking the advantage of
gaze interaction in AR systems [3,55,57]. However, the insufficient
eye tracking accuracy always degrades the user experience [30].
Researchers have made efforts to develop robust near-eye tracking
techniques. These methods need to compute gaze-relative features,
e.g., pupil center, pupil ellipse and iris ellipse, from infrared (IR)
eye images, and then use them to build certain models to compute
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gaze positions in the scene images [25]. A series of methods use
the Pupil Center Corneal Reflection (PCCR) to compute the pupil
center [19], while recent CNN-based methods directly regress pupil
centers from eye images [26,34,53].

On the other hand, many works focus on pupil ellipse fitting.
Some of them search the pupil ellipse based on the morphological
processing [16,45], while other CNN-based methods such as Deep-
VoG [62] uses the U-Net [44] to segment out the pupil area and then
fit an ellipse on it. To obtain the iris ellipse, the model-based meth-
ods are proposed to fit the iris boundary [20] especially when the
images are captured by RGB cameras. Kothari ef al. proposed the
EllSeg method that segments out complete pupil and iris structures,
and showed its effectiveness when dealing with partially occluded
pupil or iris contours [29].

No matter which eye feature is needed, e.g. pupil center, pupil
ellipse or iris ellipse, the key is to develop an effective tool for
near-eye image analysis. To achieve this goal, taking Fig. 1 as
an example, we observe that most discriminate information in the
eye image is encoded in certain edge areas, including two eyelids,
pupil contour and iris contour. Such edges are highly related to the
high-level semantic tasks. A similar observation has already been
demonstrated and used in common image segmentation tasks [50].
However, directly applying this idea to the near-eye image scenario
is difficult since eye image also contains inevitable and undesirable
edges, as shown in Fig. 3b. It is therefore important to only extract
those four ideal edges in the eye while removing the others, and then
use them for eye image analysis.

In this paper, we propose a novel near-eye image analysis method
that estimates pupil and iris ellipse parameters on the guidance of
ideally produced edge maps, aiming at improving the accuracy of
eye region segmentation and fitting for eye tracking in AR. As il-
lustrated in Fig. 1, our method first extracts high-quality edges that
contain only the upper and lower eyelids and the visible boundary on
the eyeball, e.g., iris and pupil contours. Then we utilize the edge in-
formation to guide the segmentation and ellipse fitting. The method
can be well trained on a synthetic dataset after our proposed pre-
processing, and assessed on four publicly available real datasets and
a customized AR device. Overall, the summary of our contributions
is as follows.

1. We propose a novel near-eye image analysis method with
edge maps as guidance. It facilitates natural eye tracking and
interaction in AR.

2. We propose an Edge Extraction Network (E2-Net) to pro-



duce high-quality edge maps, which only contain eyelids and
iris/pupil contours without other undesired edges. The network
is trained on sufficient realistic training images produced by
our Image Intensity Transfer (12T) technique from synthetic
images.

3. We demonstrate the advantage of using such high-quality edge
maps in eye image segmentation and ellipse fitting. An Edge-
Guided Segmentation and Fitting Network (ESF-Net) is pro-
posed to accomplish this task.

4. Extensive experimental results are obtained on four publicly
available datasets and our captured videos. Our method out-
performs current state-of-the-art methods in near-eye image
segmentation and ellipse fitting tasks. Applications of eye-
tracking in AR HMD are presented.

2 RELATED WORK

In this section, we review gaze interaction in AR and near-infrared
eye tracking techniques, and discuss edge detection and semantic
segmentation approaches.

2.1 Gaze Interaction in AR

Gaze-based interaction requires less physical demand, and provides
more natural experience than hand gesture or speech input, and
thus is potentially an effective channel in AR systems [41]. Gaze
pointing employs eye tracking techniques to identify where a person
is looking. More recent efforts have focused on taking the advantage
of gaze interaction in AR systems [3,55,57]. For instance, Kyto et
al. [30] leveraged eye gaze to point the object and used secondary
modalities to confirm the selection [30]. However, the insufficient
eye tracking accuracy always degrades the user experience [57].
Many researchers make efforts to achieve robust gaze estimation by
developing near eye tracking technology.

2.2 Near-Eye Image Analysis

Gaze estimation techniques can be broadly categorized in two
types: 1) appearance-based methods, 2) model-based methods [48].
Appearance-based methods, which learn a direct mapping from eye
images to gaze directions, were proposed for the low-resolution
eye images in far-distance scenarios [2,63]. Model-based methods
use eye features to fit 3D eye model [9], or directly compute gaze
direction [34]. For near-eye high-resolution images, model-based
methods can achieve higher degree accuracy than appearance-base
methods [48]. Therefore, we mainly discuss the model-based meth-
ods.

Near-eye tracking techniques compute gaze-relative features e.g.,
pupil center, pupil/iris ellipse, then transform the center coordinates
on the eye images to 2D gaze positions on the scene images [25], or
infer 3D eye geometric model to obtain the optical axis for 3D gaze
estimation [8,59]. A few efforts have been made to obtain the pupil
centers. Pupil Center Corneal Reflection (PCCR) uses one or more
infrared light sources to illuminate the eye, and estimate the centers
of pupil and glints in images captured by one or more IR cameras
[19]. Recent CNN-based methods directly regress pupil centers from
eye images, such DeepEye [53], NVGaze [26]. Many works have
focused on the pupil ellipse fitting. The traditional methods search
the pupil ellipse based on the morphological processing [16, 45].
DeepVOG uses the U-Net to segment the pupil area and fit ellipse
[62]. For iris ellipse, Hansen ef al. used the model-based methods
to fit the iris boundary [20], while it is more suitable for the images
captured by RGB camera. The partial pupil or iris occlusion due to
eyelashes or half-open eyelids often degrades the accuracy of these
methods. Kothari et al. proposed the EllSeg that predicts full pupil
and iris structures, and showed it effectiveness to occlusions [29].
However, due to the low amount of contrast between sclera and iris

regions in the near-infrared illumination, these CNN based methods
still suffer from coarse segmentation boundaries and insufficient
ellipse fitting accuracy. We observed edges in the images include
lots of boundary information. To this end, we propose a novel eye
segmentation and ellipse fitting with edge maps as guidance.

2.3 Edge Detection and Semantic Segmentation

Recent works have shown that edge maps contain more detailed
structure or geometry information, and could benefit semantic seg-
mentation [50], image inpainting [31], and image super-resolution
[38].

Current edge detection methods can be classified into three cate-
gories: 1) traditional edge detectors, 2) feature based methods, and
3) recent deep learning methods. The traditional edge detectors
spot edges by finding the gradient changes in colors, intensities and
textures [0, 54]. Feature based methods design hand engineered fea-
tures, and train a classifier to determine whether each patch belongs
to an edge or not [10, 11]. CNN based methods utilize supervised
networks and automatically extract hierarchical features [42, 60].
Due to the progressive growth of GANs, The GAN based meth-
ods have also explored edge detection. Yang et al. employ an
encoder-decoder model to generate edge maps of input images, and
a discriminator network to distinguish the predicted edge maps from
the ground truth edge maps [61]. We utilize GAN for detecting edge
information in the eye images.

Semantic pixel-wise segmentation based on deep learning meth-
ods has shown significant advantages over the traditional image
segmentation [4]. The common used network architecture is the
encoder-decoder structure [32,44]. The decoder network learns
to decode the low resolution encoded feature maps for pixel-wise
classification. DeconvNet employs multiple deconvolution layers
in the decoder to improve segmentation performance [40]. In Seg-
Net, the decoder upsamples the features from its encoder using the
pool indices [4]. Recent works explore multi-modal image segmen-
tation for multi-input tasks, e.g., RGB-Depth segmentation [21],
and Magnetic Resonance Imaging (MRI) segmentation [12]. The
multi-modal early fusion strategy is designed to stack the original
inputs directly. This method is appropriate for linear relationships
that exist between low-level features in same modalities [47]. For
different modalities, Nie et al. proposed the late fusion strategy,
where different modalities are processed separately by the CNNs
whose high-level outputs are fused [39]. For the integration of edge
maps and eye images, our ESF-Net adopts the late fusion strategy.

3 METHODOLOGY
3.1 Overview

We propose a novel near-eye images analysis method including eye
segmentation as well as the ellipse parameter fitting of pupil and iris.
The pipeline of our work is shown in Fig. 2. We first propose an
edge extraction network (E2-Net). The network is optimized with
adversarial learning to produce high-quality edge maps. To acquire
sufficient realistic training images, we further propose the Image
Intensity Transfer (I>T) approach for generating realistic images
from synthetic images. We then propose an edge-guided segmen-
tation and fitting network (ESF-Net). Both eye images and the
generated edge maps are fed into the network to perform multi-task
learning. The network respectively generates the eye segmentation
and regresses the ellipse parameters of pupil and iris. In addition,
we notice the regressed parameters usually are inaccurate. We also
propose the Adaptive Search Module (ASM) to search the optimal
ellipse parameters with the guidance of the segmentation maps.
The rest of this section is organized as follows. we introduce the
E2-Net in the first subsection including the architecture of E2-Net
and the detail of I>T method. The ESF-Net is introduced in the
second subsection. We also describe the ASM in this subsection.
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Figure 2: Overview of our method. We propose the ESF-Net that can obtain complete semantic maps of iris and pupil, and accurate ellipse
parameters. We also design the E2-Net that aims to recognize unbroken task-related edges in eye images and overlook the edges of eyelashes,
glasses and reflections. ASM fits the optimal ellipse parameters with the guidance of segmentation results and regression results. Note that ASM
is actually independent of the segmentation and has no learnable parameters.

Finally, we implement a 2D gaze estimation task in the customized
AR HMD device. The detail of the implementation is introduced in
the third subsection. We also provide the implementation details of
E2-Net and ESF-Net in the last.

3.2 Edge Detection

To detect edge maps from eye images, we respectively propose the
E2-Net for edge extraction and the I2T for realistic training images
generation. We first introduce the E2-Net.

3.2.1 Edge Extraction Network

Our task is to analyze near-eye images. Therefore, the goal of E2-
Net is to extract the task-related edges, which contain the upper and
lower eyelids, and the visible boundary inside the eyeball, e.g., iris
and pupil contours. There are two challenges in the task-related
edge extraction: 1) To eliminate task-unrelated edges. We show
the result of Canny detection [6] in Fig. 3b. Many undesired edges
such as eyelashes, glasses and glints are extracted. These edges are
mixed with the task-related edges and complicate the task-related
edge extraction task. 2) To complete task-related edges. Some
environmental factors such as ambient infrared illumination have
large impact on the edge extraction. For example, as shown in the
bottom of Fig. 3a, the limbus (border of the iris and sclera) is blurry
due to the ambient infrared illumination. This causes the task-related
edges lost (red box in Fig. 3b) and require methods to complete the
task-related edges. To handle the two challenges, we integrate edge
generation networks with adversarial learning [18] and propose the
E2-Net. The top of Fig. 2 shows the overall structure of E2-Net.
Architecture: The E2-Net contains an edge generator G and a dis-
criminator D. Let {(I;, E;)} denotes a set of pairs of corresponding
images in the training set T, where I; is an eye image and E; is
the corresponding edge map. The generator G generates edge map
E; from images, i.e., E; = Gg(I;), where @ represents function
parameters. The discriminator Dy performs binary classification,
where ¢ represents the parameters of the discriminator. It is fed with
edge maps, and aims to distinguish the ground truth edge map E;
from the predicted one E i

Loss functions: We optimize the generator by minimizing the com-
bination of cross-entropy loss and adversarial loss:
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Figure 3: Edge extraction from eye images. (a) Eye images captured
in AR HMD device. (b) Results of edge extraction utilizing the Canny
detection [6]. (c) Task-related edges. Notice the edges in green boxes

represent task-unrelated edges. We seek to employ E2-Net to spot
task-related edges and restore the lost edges in red box.

where a and 3 are fixed weight parameters. The binary cross-entropy
loss, {hce minimizes the difference between the predicted edge map
and the ground truth edge map. The formulation of the e can refer
to equation (10) in [22].

The adversarial loss €pyre forces the generator to produce de-
sired edge maps. The regular generative adversarial network (GAN)
suffers from vanishing gradients due to the cross entropy loss func-
tion [36], which makes it difficult to update the generator. Inspired by
the Least Squares GAN (LSGAN) [35], we utilize the least squares
loss function to formulate adversarial loss. The formulation is:

Coure (0:1;) = (Dg(Rg(I) —1)* = (Dg(E) - 1% (2)

The discriminator network aims to correctly distinguish inputs. It
is optimized with:

Lp(9) =D (Dy(E)- 12+ > (Dg(ED):. ()

3.2.2

We use sufficient synthetic images for training the E2-Net. However,
there is large difference between the real and synthetic images. The

Image Intensity Transfer
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Figure 4: Eye appearance of real images and synthetic images. (a)
Real images from different datasets. (b) Synthetic images from RIT-
Eyes. (c) The corresponding transferred images employing the Image
Intensity Transfer (I2T) module. Notice the sclera and iris regions in
the transferred images are more similar to the real images than the
synthetic images.
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Figure 5: Visualization of real and synthetic images in 2-D space vis
t-SNE. Left: The 2-D feature distribution of synthetic and real images
before I2T. Right: The 2-D feature distribution after I?T. It is obvious
that out method shortens the gap between synthetic and real domains.
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Figure 6: The procedure of aligning image intensity. (a) One synthetic
image. The synthetic image is divided into three subregions. (b) The
histogram of sclera and iris region. (c) The fitted GMM. (d) The new
target histogram samples from the GMM. (e) The histogram matching
performs a mapping that transforms the intensities of source to the
target. (f) The image is transferred on all three subregions.

large difference usually degrades the model performance and even
leads to an incorrect estimation when the model is used in real world.
To solve this problem, we propose the I2T method for producing
realistic images from synthetic images.

The I2T method is designed based on our observation, synthetic
images preserve the similar eye architecture while having obvious
intensity difference with real images. We also show examples in Fig.
4. The core idea of 12T method is to align the intensity distribution

of synthetic images with real images. We use the dimensionality
reduction to visualize the synthetic and real images in 2-D space
before and after 12T, as shown in Fig. 5. The comparison in Fig.
5, also shows that I2T shortens the gap between synthetic and real
images. The dimensionality reduction method we use is t-distributed
Stochastic Neighbor Embedding (t-SNE) [52]. The I2T contains a
total of four steps.

1) Sample data: We first sample some real images to model the
distribution. To ensure the diversity of real images, we separately
sample images from four real near-eye datasets. A total of 10000
near-eye images are sampled as the basic near-eye image library.

2) Compute histogram: Given a real image, we divide it into
three subregions which respectively contain iris and sclera, skin, and
pupil. In the I2T, the intensity distribution is separately transferred
in each region. We split the sclera and iris into the same subregion
for blurring the limbus of synthetic image. We calculate the intensity
histogram x? € R2%° of each region, where i € {1,2,3}. We simply
refer all the three intensity histograms as x in the rest.

3) Fit mixture gaussian distributions: The basic near-eye image
library contains finite eye images. To enlarge the library, we fit three
mixture gaussian distributions (GMM) which corresponds to the
distributions of three subregion histograms. We can sample from the
fitted GMM:s for infinite intensity histograms. Besides, the different
combinations of three subregion histograms also enrich the targets.

4) Align image intensity: The procedure is shown in Fig. 6. Given
a synthetic image, we first compute the intensity histogram of each
subregion of synthetic image. On the other hand, we sample the
intensity histogram as target from the fitted GMM. Then we employ
the histogram matching algorithm [46] and perform a mapping that
transforms intensities of the source image towards the target.

3.3 Edge-Guided Segmentation and Fitting Network

The edge extraction network can provide accurate task-related edge
maps. Then, We proposed the ESF-Net, which utilizes the edge
maps to guide the eye segmentation and the ellipse parameter fitting.
The architecture of ESF-Net is shown in Fig. 2.

The input of ESF-Net is near-eye images and the generated edge
maps. We feed the two images into an encoder for feature extraction.
We concatenate their extracted feature maps in channel dimension
to form eye feature. The eye feature contain edge information
and semantic information of the near-eye images, and we use the
feature to perform two tasks. The feature is first fed into a decoder
to perform eye segmentation. The decoder is composed of multi-
deconvolution layers. The output of decoder is a three-channel
segmentation map, which contains: iris, pupil and background. The
iris and pupil centers are derived from segmentation maps using the
weighted summation of pixel coordinates [29]. The feature is second
fed into a Multilayer Perceptron (MLP) to regress the ellipse axes
and orientation. The loss functions of ESF-Net are

Lzﬁseg"'-ﬁfita )

where Lseg denotes the loss of segmentation maps, L 7 ;; represents
the loss of ellipse parameter fitting. The Lseg We use is proposed in
RITnet [7], it constrain these problems such as the blurry boundary
of segmentation map and the class imbalance of each area. L, is
the L1 Loss, which computes the errors of ellipse parameters.
Based on the observation in the final outputs, we found the el-
lipse of segmentation map is more accurate than the fitting results
of regression module. However, the parameters (a, b,6) are hard
to obtain directly from the segmentation map, e.g., occasionally
broken segmentation maps (Fig. 7). To this end, we propose an
Adaptive Search Module (ASM) to search the optimal ellipse param-
eters (a,b,0) on the guidance of segmentation maps, as illustrated
in Algorithm 1. The searching goal is to maximize the value of In-
tersection Over Union (IoU) between the segmentation map and the



Algorithm 1: Adaptive Search Module (ASM)

Data: Regression ellipse parameters P = [a, b, 8],
segmentation map (M), max number of steps (T)
Result: Optimal ellipse parameters P* = [a*,b", 5]
1 Initialization step size D = [1,1,1];
2 AB* « —oo;
3 fort— 1toT do

4 for each P; in P do
5 P; — P;—-Dj;
6 if IoU(P, M) > AB* then
7 | continue;
8 end
9 P; — P;+2XxDj;
10 if IoU(P. M) > AB* then
1 | continue;
12 end
13 P; — P;—Dj;
14 D[ — D,' XO.S;
15 end
6 | AB* <IoU(P, M):
17 end
18 E* «— P;

ellipse formed by parameters. Specifically, we first keep the ellipse
center fixed, and set the regressed (a, b, 6) as the initial parameters.
Then in each iteration, parameters are changed based on the step
denoted as D. The iteration direction depends on the IoU. The D
will gradually decay as the searching process. The algorithm will be
iterated for T times, and then an optimal ellipse parameter is found.

3.4 Application

We will make use of the iris parameters to reconstruct the 3D eye
geometric model and estimate the optical axis in future work. In
this paper, we implement 2D gaze estimation based on a customized
AR device for demonstrating the effectiveness of our method. The
2D gaze estimation task transforms the pupil centers on the eye
image to 2D gaze positions on the scene camera image, using the
polynomial mapping function denoted as equation (4) in [5]. Note
that the mentioned mapping function only computes the monocular
gaze position. We obtain the binocular gaze position by averaging
the gaze positions of left eye and right eye.

3.5 Implementation Details

E2-Net: We implement our network using PyTorch. The backbone
generator G could employ any edge detection network, such as
the commonly used HED [60], DexiNed [42]. We adopt the Bi-
Directional Cascade Network (BDCN) [22] as our edge generator
network G. The BDCN learns the multi-scale representations using a
shallow network. We set the batch size to 48 for all the experiments.
We observe the unbalanced ratio of edge/non-edge pixels of eye
image, and set the balance parameter A as 3. We sum the binary cross-
entropy loss ¢pce, Which contains 320 x 240 (image size) loss items.
In order to train the E2-Net stably, we fix the weights of generator
loss to @ = 0.2 and B = 1000. We set the initial learning rate of
generator G and discriminator D to 1e-6 and le-4 separately, which
decreases by half after every 30 iterations. For other parameters, we
keep the same setting as the original network. We apply a multi-
scale discriminator architecture [24, 56] to guide the generator to
produce pure task-related edge map. Edge detection experiments
are conducted on an NVIDIA GeForce RTX 3090 GPU with 24 GB
memory.

ESF-Net: Indeed, the encoder, decoder and regression module
can be arbitrary. In this paper, we employ the DenseEINet as the
backbone, two-layer MLP for regression module similar to EllSeg

[29]. All networks are trained with a constant 5 X 1074 learning
rate and 48 batch size using ADAM optimizer [28]. We empirically
set T as 40 in adaptive search module. Segmentation and fitting
experiments are conducted on two NVIDIA GeForce RTX 3090
GPUs with 48 GB memory.

Table 1: Summary of train and test datasets. Note that we discard im-
ages without valid pupil and iris fits. * indicates we employ annotations
presented in TEyeD.

Image Sample

Dataset Source Purpose Count Count
RUIEYeS  Synthetic  Train 45516 45516
eneral
NVGaze-
AR AR HMD Test 2265127 11051
OpenEDS VR HMD Test 11202 11200

LPW* Head-mounted Test

Eye tracker 130856 10865

Fuhl* Head-mounted Test

Eye tracker 5665053 11197

4 EXPERIMENTS

In this section, we compare our method with existing methods
through extensive experiments. We use the publicly-available codes
with recommended parameter settings. This section is organized
as follows. Firstly, we introduce the datasets and data processing
methods. Then we make quantitative and qualitative comparisons
with the state-of-the-art methods in segmentation and fitting results.
Afterwards, we report our edge detection performance on real near-
eye datasets. Besides, we also provide ablation studies to validate
the effectiveness of different modules. Finally, We demonstrate the
robustness and benefit of our method to gaze-tracking tasks in real
AR device.

4.1 Datasets

In this work, we employ the synthetic eye dataset as our train dataset,
which has accurate and abundant label information. The synthetic
datasets can be categorized in two types: one based on natural
light [48, 58], and another based on near-infrared light [26,49]. Due
to near-infrared camera used by AR HMD, we use the RITEyes-
General [37]. We choose the following real near-eye datasets for
our experiments: NVGaze-AR [26], OpenEDS [17], LPW [51],
ElSe [16], ExCuSe [14] and PupilNet [15]. We combine ElSe, Ex-
CuSe with PupilNet, and cite them as Fuhl. These datasets other
than OpenEDS only annotate pupil center. Recent work TEyeD [13]
adopts semi-automated annotation method and provides annotations
of pupil, iris and eyelids for NVGaze-AR, LPW, and Fuhl. We
employ annotations presented in TEyeD as their ground truth. For
OpenEDS, we provide entire semantic masks by applying elliptical
fitting algorithm [43]. We utilize the same image preprocessing and
data augmentation for ESF-Net as EllSeg. For E2-Net, we increase
the probability (30%) of occurrence, and add the random crop. Be-
cause the number of both NVGaze-AR and Fuhl exceeds 2 million,
and the similarity between frames is quite high, we reduce the num-
ber of test datasets by fixed-interval sampling. We summarize more
details about each dataset in Table 1.

4.2 Eye Segmentation and Fitting

We compare our approach with state-of-the-art methods including
DeepVOG [62], RITNet [7] and EllSeg [29]. DeepVOG divides
images into two classes: pupil and background, i.e., non-iris. RIT-
Net denotes semantic maps as four classes: pupil, iris, sclera, and
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Benchmark LPW NVGaze

DeepVOG 0.833 - 4.66 - - - 0.867 - 1.23 - - -
RITNet 0.822 0.509 7.47 12.28 - - 0.881 0.773 1.85 3.66 - -
EllSeg 0.876 0.527 5.17 12.29 0.679 0.622 0.878 0.758 1.25 3.21 0.758 0.718
Ours (E) 0.885 0.689 4.41 11.84 0.780 0.700 0.890 0.814 1.24 2.90 0.765 0.747

Ours (E+I) 0.896 0.688 3.68 10.27 0.762 0.745 0.884 0.812 1.20 3.24 0.763 0.745

Benchmark OpenEDS Fuhl

DeepVOG 0.890 - 1.41 - - - 0.856 - 4.38 - - -
RITNet 0.889 0.611 241 6.24 - - 0.862 0.718 5.09 791 - -
EllSeg 0.921 0.740 1.39 5.32 0.799 0.727 0.893 0.737 3.70 8.02 0.778 0.739
Ours (E) 0915 0.850 1.44 6.06 0.810 0.778 0.893 0.795 2.84 7.63 0.790 0.750

Ours (E+I) 0.925 0.821 1.27 5.40 0.813 0.780 0.904 0.813 2.80 7.25 0.800 0.780

Table 2: Quantitative comparison between DeepVOG, RITNet, EllSeg and our methods (along rows) in LPW, NVGaze, OpenEDS and Fuhl dataset.

T & | represent larger and smaller is better, respectively. Bold values emphasize the best performance within each dataset. Because DeepVOG
and RITNet was not trained to fit the pupil and iris ellipse, we are unable to provide BloU scores. Ours (E) means the result of our model that only
inputs edge maps, Ours (E+l) means the result of our model that combines images with edge maps. “PE” represents the Euclidean distance

between centers, denoted as Pixel Error. “BloU” denotes the Bounding box overlap loU metric.

DeepVOG

RITNet

Figure 7: Visual comparisons of segmentation and fitting on NVGaze-AR, OpenEDS, LPW and Fuhl. Obviously, compared to other methods,
our approach smooths the contours of segmentation map and produce more accurate ellipse shape. Besides, our method is rarely affected by
disturbances, such as the reflections on the glasses or eye corner. The red and blue boxes indicate the good and absent edges, respectively.

background, but no fitting parameters. EllSeg defines three classes:
pupil, iris and background, and also output the fitting parameters.
The results of our ESF-Net are consistent with EllSeg.

Evaluation Metrics: We reports our segmentation and fitting
results with commonly used evaluation metrics: 1) IoU: All seg-
mentation performance is assessed by the mean Intersection Over
Union (IoU) scores . 2) PE: The accuracy of pupil and iris centers
is evaluated as the Euclidean distance between the predicted value
and their corresponding annotations, denoted as Pixel Error (PE). 3)
BlIoU: Ellipse parameters accuracy is measured by a Bounding box
overlap IoU metric (BIoU) proposed by EllSeg [29]. The bounding
box uses a minimal rectangle to enclose elliptical structure, and
therefore, it can evaluate ellipse parameters (a,b,6).

Comparison with state-of-the-art: Quantitative comparison re-
sults are shown in Table 2, from which we make the following
observations. 1) Among all the 24 metrics from four datasets, our
methods outperform other methods in 23 metrics, meaning that our

methods in general improve the segmentation and ellipse fitting ac-
curacy significantly. 2) The only metric on which our methods fail
to be the best is PE;s. Our (E+I) achieves 5.4 pixel error, higher
than EllSeg by only 0.08 pixel. Such a difference is not obvious.
3) In average, our methods outperform the second best method by
1% and 15% in pupil and iris segmentation accuracy, respectively.
4) In average, our methods surpass the second best method by 4%
and 9% in pupil and iris ellipse fitting accuracy, respectively. 5)
Our (E) and Our (E+I) achieve generally similar average results.
This demonstrates the advantage of using our extracted high-quality
edges in segmentation and ellipse fitting, even without using the
original image as input.

Visual examples are shown in Fig. 7. As shown, ESF-Net pre-
serves the structural integrity of segmentation map, and improves
the accuracy of ellipse fitting. Specifically, our method surpasses
the other methods in two key aspects. On the one hand, our method
is more interested in boundary region, thus smooths the contours of



Table 3: Quantitative comparison between Canny, Sobel, BDCN and
E2-Net (Our) in NVGaze-AR, OpenEDS, LPW and Fuhl datasets. Bold
values indicate the best performance within each dataset. The higher
the better for all metrics.

Dataset Method ODS 1 OIS 1 AP 7T
Canny 0.182 0.182 0.071

NVGaze-AR Sobel 0.230 0.239 0.166
BDCN 0.512 0.522 0.487

Ours 0.550 0.559 0.532

Canny 0.173 0.173 0.075

OpenEDS Sobel 0.187 0.200 0.113
BDCN 0.496 0.504 0.487

Ours 0.541 0.547 0.541

Canny 0.122 0.122 0.063

LPW Sobel 0.180 0.190 0.120
BDCN 0.396 0.411 0.380

Ours 0.417 0.426 0.402

Canny 0.154 0.154 0.060

Fuhl Sobel 0.177 0.185 0.096
BDCN 0.460 0.470 0.429

Ours 0.475 0.484 0.444

segmentation map (the 1st and 2nd rows in Fig. 7) and segments
more accurate ellipse shape (the 3rd row in Fig. 7). The 2nd row
in Fig. 7 distinctly illustrates the importance of task-related edges.
The red box indicates that our ESF-Net correctly segments the map
in this subregion due to the good edge, while the blue box reveals
that the segmentation map is deficient due to the absent edge. On
the other hand, the ESF-Net learns the appearance restrain between
ellipses and eyelids from high-quality edge maps, and is rarely af-
fected by disturbances, e.g., the reflections on the glasses (the 4th
row in Fig. 7) and the eye corner (the 2nd row in Fig. 7).

4.3 Edge Detection

We compare our approach with traditional edge detection methods in-
cluding Canny detection [6], Sobel detection [54] and deep learning
based BDCN [22] on all real near-eye datasets.

Evaluation Metrics: The predicted edge map is an edge probabil-
ity map (EPM), but not a binary edge map (BEM). We need to apply
a threshold 7 on the EPM to obtain a BEM. There are two options to
set 77: the first one is called optimal dataset scale (ODS) which uti-
lizes a fixed 7 for all edge maps from the same dataset. The second
one is known as optimal image scale (OIS), which selects the best i
for each image [33]. We employ F-measure (%W) of
both ODS and OIS in our experiments. Besides, we also calculate
the average precision (AP), which corresponds to the area under the
precision-recall curve.

Comparison with state-of-the-art: Quantitative comparison re-
sults are shown in Table 3. As shown, our method significantly
outperforms other methods in all quality metrics. Specifically, in
terms of ODS, E2-Net outperforms the BDCN by 7%, 9%, 5% and
49 on four datasets. The OIS and AP of E2-Net have also the better
results than other methods. The results illustrate that E2-Net can
effectively detect task-related edges. Fig. 8 presents visual compari-
son. Our method solves the two challenges mentioned in Section 3.2.
Firstly, E2-Net ignores the edges of eyelashes, glasses, and reflec-
tions, as illustrated in the green boxes of Fig. 8. Secondly, E2-Net
can accurately extract blurry task-related edges in eye images, as
indicated in the red boxes of Fig. 8.
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Figure 8: Visual comparison of edge detection on NVGaze-AR, LPW,
OpenEDS and Fuhl. Notice the edges in boxes represent
the comparison of task-unrelated edges. The red boxes illustrate
the comparison of task-related edges. E2-Net can accurately spot

unbroken task-related edges in eye images and overlook the edges
of eyelashes, glasses and reflections.

Table 4: Comparison of using different modules in eye edge detection
network.

G T D ODS 1 OIS 1 AP 1
7 0.396 0411 0.380
v v 0.406 0.416 0.395
v v v 0.417 0.426 0.402

Table 5: Comparison of using different inputs in ESF-Net. “I” means
the images, “E” means edge maps.

I E | IoUpypit ToUirs PEpupit  PEiris BIoUpypit  BloUisis

v 0.876 0527 517 1229  0.679 0.622
V| 0885 0.689 441 11.84 0.668 0.670

v v | 0896 0.688 3.68 10.27  0.665 0.674

Table 6: Ablation study for Adaptive Search Module (ASM). The ASM
searches the optimal ellipse parameters, thus can improve the BloU.

I E ASM [ BloUpyiT  BloUyssT
v 0.668 0.670
Y 0.780 0.700

VR 0.665 0.674

v vV 0.762 0.745

4.4 Ablation study

We design ablation studies on LPW dataset to validate the effective-
ness of Image Intensity Transfer (I2T) and GAN for edge detection,
and edge maps for segmentation and fitting. The BDCN [22] is used
as the baseline of edge detection network. The EllSeg [29] is used
as the baseline of segmentation and fitting network.

Effectiveness of IPT and GAN for edge detection: The I2T module
is only utilized in edge detection task for extracting high-quality
edge maps in real images. As shown in Table 4, our baseline only
includes a generator G, which yield the result of ODS = 0.396. By
adding the I*T module, our method achieves a 2% improvement.
By introducing the discriminator D, our system achieves the best
results with 5% improvement than baseline. This hence verifies the
importance of I?T and GAN in edge detection.

Effectiveness of Edge maps: To validate the contribution of task-
related edges, we separately feed 1) the eye image, 2) the edge
map, and 3) the eye image and edge map into the network. As



shown in Table 5, the segmentation metrics (IoUpyp; and IoUjyis)
are significantly improved by introducing the edge maps. After
fusing the features of eye images and edge maps, the accuracy of
pupil and iris center (PEyp; and PEjris) is further improved. Note
that although the BloUyp;; of baseline is higher than ours with 0.01,
we observed that the regressed parameter 6 is usually inaccurate.
Therefore, we propose the ASM to solve this problem. The above
experiments show that utilizing high-quality edge maps can greatly
improve the results of eye segmentation and fitting.

Effectiveness of ASM: We evaluate the effectiveness of ASM for
ellipse fitting. According to Table 6 (the first two rows), we can
see that after using the ASM, the BloUp,;,; is increased from 0.668
to 0.780 with 17% improvement. The BloUj;s is also improved
with 4% improvement. The comparison between the last two rows
shows that BloUp,yp;1 and BloUiyis are improved with 14% and 11%
respectively. The experimental results prove that the ASM can
search the optimal ellipse parameters (a,b,6) on the guidance of
segmentation map and the regressed results.

Eye trackers

Figure 9: We validate the effectiveness of our methods on the cus-
tomized AR device. Eye trackers are mounted below the user’s eyes.

4.5 Application

To demonstrate the usability of our method, we assessed EllSeg
and ESF-Net in the customized AR device, as shown in Fig 9. The
diagonal line of AR display images is 80 inches, and the images are
shown at a depth of 3m with 1024 X 768 resolution. We collected
user videos under indoor and outdoor illumination environments.
The participants can wear glasses or make-up. We visually compare
segmentation and ellipse fitting results, as illustrated in Fig 10. As
shown, our method obtains accurate segmentation maps and ellipse
parameters. The videos of specific comparison can be found in
supplemental videos.

We also implemented the 2D gaze estimation task in the AR
device. A user was select to complete this test. We used 9 calibration
points to calibrate eye gaze, and set these points as references. We
visualize the eye gaze, as shown in Fig 11. Our system estimates
gaze with an error of only about 0.38° on average.

5 CONCLUSION

We presented a novel near-eye image analysis method including
eye segmentation and the ellipse fitting of pupil and iris with edge
maps as guidance. To this end, We first showed the E2-Net that is
optimized with adversarial learning to produce task-related edge
maps. The network is trained on sufficient realistic training images
produced by the I’T approach from synthetic images. We then
introduced the ESF-Net. Both eye images and the predicted edge
maps are fed into the network to conduct multi-task learning. The
ESF-Net generates the segmentation maps and regress the ellipse
parameters. However, we notice the regresses parameters are usually
inaccurate. We also proposed the ASM to search the optimal ellipse
parameters with the guidance of segmentation maps. Extensive
experimental results show that our method outperforms current state-

EllSeg

Left eye Riht eye

Left eye

Right eye

Figure 10: Left: The result of baseline method. Right: The result of
our method. The visual comparison demonstrates the advantage of
using such high-quality edge maps in eye image segmentation and
ellipse fitting.
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Figure 11: Gaze Error visualization in the real AR devices. Reference
and estimated points are marked with red circle and blue diagonal
cross, separately.

of-the-art methods in near-eye image segmentation and ellipse fitting
tasks. We also provide the applications of eye-tracking in AR HMD.

Future work: 1) Currently, we collected data by using our device
and assessed the networks offline. In the future, we will conduct
more online tests with the AR device in real time. Besides, we
can use knowledge distillation to optimize our network for energy-
efficient application [23]. 2) Our method provides different features,
e.g., pupil center, pupil ellipse, and iris ellipse. These features can
support many applications [1,27]. We will fit 3D eye model based
on a set of eye features, which can mitigate the effect of device
slippage and improve the stability of gaze estimation [9].

REFERENCES

[1] Microsoft HoloLens 2, (2021).

[2] A. A. Akinyelu and P. J. Blignaut. Convolutional neural network-based
methods for eye gaze estimation: A survey. IEEE Access, 8:142581—
142605, 2020.

[3] M. Béce, T. Leppinen, D. G. De Gomez, and A. R. Gomez. ubigaze:
ubiquitous augmented reality messaging using gaze gestures. In SIG-



[5]

[6

=

[7

—

[9

—

[10]

[11]

[12]

[13]

[14

[15]

[16

(17]

[18]

[19]

[20]

[21

[22]

GRAPH ASIA 2016 Mobile Graphics and Interactive Applications, pp.
1-5.2016.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. /EEE
transactions on pattern analysis and machine intelligence, 39(12):2481—
2495, 2017.

P. Blignaut. A new mapping function to improve the accuracy of a
video-based eye tracker. In Proceedings of the south african institute
for computer scientists and information technologists conference, pp.
56-59, 2013.

J. Canny. A computational approach to edge detection. IEEE Trans-
actions on pattern analysis and machine intelligence, (6):679-698,
1986.

A. K. Chaudhary, R. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bailey,
C. Kanan, G. Diaz, and J. B. Pelz. Ritnet: real-time semantic segmen-
tation of the eye for gaze tracking. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 3698-3702.
IEEE, 2019.

K. Dierkes, M. Kassner, and A. Bulling. A novel approach to single
camera, glint-free 3d eye model fitting including corneal refraction. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research
& Applications, pp. 1-9, 2018.

K. Dierkes, M. Kassner, and A. Bulling. A fast approach to refraction-
aware eye-model fitting and gaze prediction. In K. Krejtz and B. Sharif,
eds., Proceedings of the 11th ACM Symposium on Eye Tracking Re-
search & Applications, pp. 23:1-23:9. ACM, 2019.

P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and
object boundaries. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 1964—
1971. IEEE, 2006.

P. Dollar and C. L. Zitnick. Fast edge detection using structured
forests. IEEE transactions on pattern analysis and machine intelli-
gence, 37(8):1558-1570, 2014.

J. Dolz, I. B. Ayed, and C. Desrosiers. Dense multi-path u-net for
ischemic stroke lesion segmentation in multiple image modalities. In
International MICCAI Brainlesion Workshop, pp. 271-282. Springer,
2018.

W. Fuhl, G. Kasneci, and E. Kasneci. Teyed: Over 20 million real-
world eye images with pupil, eyelid, and iris 2d and 3d segmentations,
2d and 3d landmarks, 3d eyeball, gaze vector, and eye movement types.
arXiv preprint arXiv:2102.02115, 2021.

W. Fuhl, T. Kiibler, K. Sippel, W. Rosenstiel, and E. Kasneci. Excuse:
Robust pupil detection in real-world scenarios. In International confer-
ence on computer analysis of images and patterns, pp. 39-51. Springer,
2015.

W. Fuhl, T. Santini, G. Kasneci, W. Rosenstiel, and E. Kasneci. Pupilnet
v2. 0: Convolutional neural networks for cpu based real time robust
pupil detection. arXiv preprint arXiv:1711.00112,2017.

W. Fuhl, T. C. Santini, T. Kiibler, and E. Kasneci. Else: Ellipse selection
for robust pupil detection in real-world environments. In Proceedings
of the Ninth Biennial ACM Symposium on Eye Tracking Research &
Applications, pp. 123-130, 2016.

S. J. Garbin, O. Komogortsev, R. Cavin, G. Hughes, Y. Shen, I. Schuetz,
and S. S. Talathi. Dataset for eye tracking on a virtual reality platform.
In ACM Symposium on Eye Tracking Research and Applications, pp.
1-10, 2020.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks.
arXiv preprint arXiv:1406.2661, 2014.

E. D. Guestrin and M. Eizenman. General theory of remote gaze estima-
tion using the pupil center and corneal reflections. IEEE Transactions
on biomedical engineering, 53(6):1124-1133, 2006.

D. W. Hansen and A. E. Pece. Eye tracking in the wild. Computer
Vision and Image Understanding, 98(1):155-181, 2005.

C. Hazirbas, L. Ma, C. Domokos, and D. Cremers. Fusenet: Incorporat-
ing depth into semantic segmentation via fusion-based cnn architecture.
In Asian conference on computer vision, pp. 213-228. Springer, 2016.
J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang. Bi-directional
cascade network for perceptual edge detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

pp. 3828-3837, 2019.

A. Holliday, M. Barekatain, J. Laurmaa, C. Kandaswamy, and
H. Prendinger. Speedup of deep learning ensembles for semantic
segmentation using a model compression technique. Computer Vision
and Image Understanding, 164:16-26, 2017.

X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsu-
pervised image-to-image translation. In Proceedings of the European
conference on computer vision (ECCV), pp. 172-189, 2018.

M. Kassner, W. Patera, and A. Bulling. Pupil: an open source platform
for pervasive eye tracking and mobile gaze-based interaction. In Pro-
ceedings of the 2014 ACM international joint conference on pervasive
and ubiquitous computing: Adjunct publication, pp. 1151-1160, 2014.
J. Kim, M. Stengel, A. Majercik, S. De Mello, D. Dunn, S. Laine,
M. McGuire, and D. Luebke. Nvgaze: An anatomically-informed
dataset for low-latency, near-eye gaze estimation. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1-12, 2019.

T. Kim and E. Lee. Experimental verification of objective visual fatigue
measurement based on accurate pupil detection of infrared eye image
and multi-feature analysis. Sensors, 20:4814, 08 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
iclr2015. arXiv preprint arXiv:1412.6980, 9, 2015.

R. S. Kothari, A. K. Chaudhary, R. J. Bailey, J. B. Pelz, and G. J.
Diaz. Ellseg: An ellipse segmentation framework for robust gaze
tracking. IEEE Transactions on Visualization and Computer Graphics,
27(5):2757-2767, 2021.

M. Kyto, B. Ens, T. Piumsomboon, G. A. Lee, and M. Billinghurst.
Pinpointing: Precise head-and eye-based target selection for augmented
reality. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, pp. 1-14, 2018.

J. Li, F. He, L. Zhang, B. Du, and D. Tao. Progressive reconstruction of
visual structure for image inpainting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5962-5971, 2019.
G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path refine-
ment networks for high-resolution semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 5168-5177, 2017.

Y. Liu, M. Cheng, X. Hu, J. Bian, L. Zhang, X. Bai, and J. Tang. Richer
convolutional features for edge detection. IEEE Trans. Pattern Anal.
Mach. Intell., 41(8):1939-1946, 2019.

C. Lu, P. Chakravarthula, Y. Tao, S. Chen, and H. Fuchs. Improved
vergence and accommodation via purkinje image tracking with multiple
cameras for ar glasses. In 2020 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 320-331. IEEE, 2020.
X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least
squares generative adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pp. 2794-2802, 2017.
L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

N. Nair, A. K. Chaudhary, R. S. Kothari, G. J. Diaz, J. B. Pelz, and
R. Bailey. Rit-eyes: realistically rendered eye images for eye-tracking
applications. In ACM Symposium on Eye Tracking Research and
Applications, pp. 1-3, 2020.

K. Nazeri, H. Thasarathan, and M. Ebrahimi. Edge-informed single
image super-resolution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pp. 3275-3284, 2019.

D. Nie, L. Wang, Y. Gao, and D. Shen. Fully convolutional networks
for multi-modality isointense infant brain image segmentation. In 2016
IEEE 13Th international symposium on biomedical imaging (ISBI), pp.
1342-1345. IEEE, 2016.

H. Noh, S. Hong, and B. Han. Learning deconvolution network for
semantic segmentation. In Proceedings of the IEEE international
conference on computer vision, pp. 1520-1528, 2015.

H. M. Park, S. H. Lee, and J. S. Choi. Wearable augmented reality
system using gaze interaction. In 2008 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, pp. 175-176. IEEE,
2008.

X. S. Poma, E. Riba, and A. Sappa. Dense extreme inception network:
Towards a robust cnn model for edge detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp.



[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

(541

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

1923-1932, 2020.

D. K. Prasad, M. K. Leung, and C. Quek. Ellifit: An unconstrained, non-
iterative, least squares based geometric ellipse fitting method. Pattern
Recognition, 46(5):1449-1465, 2013.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pp.
234-241. Springer, 2015.

T. Santini, W. Fuhl, and E. Kasneci. Pure: Robust pupil detection
for real-time pervasive eye tracking. Computer Vision and Image
Understanding, 170:40-50, 2018.

D. Shapira, S. Avidan, and Y. Hel-Or. Multiple histogram matching. In
2013 IEEE International Conference on Image Processing, pp. 2269—
2273.IEEE, 2013.

N. Srivastava, R. Salakhutdinov, et al. Multimodal learning with deep
boltzmann machines. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States, vol. 1, pp. 2231-2239. Citeseer, 2012.
Y. Sugano, Y. Matsushita, and Y. Sato. Learning-by-synthesis for
appearance-based 3d gaze estimation. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1821-1828. IEEE Com-
puter Society, 2014.

L. Swirski and N. A. Dodgson. Rendering synthetic ground truth
images for eye tracker evaluation. In P. Qvarfordt and D. W. Hansen,
eds., Proceedings of the 7th ACM Symposium on Eye Tracking Research
& Applications, pp. 219-222. ACM, 2014.

H. Tang, X. Qi, D. Xu, P. H. Torr, and N. Sebe. Edge guided gans
with semantic preserving for semantic image synthesis. arXiv preprint
arXiv:2003.13898, 2020.

M. Tonsen, X. Zhang, Y. Sugano, and A. Bulling. Labelled pupils
in the wild: a dataset for studying pupil detection in unconstrained
environments. In Proceedings of the ninth biennial ACM symposium
on eye tracking research & applications, pp. 139-142, 2016.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(86), 2008.

F. J. Vera-Olmos, E. Pardo, H. Melero, and N. Malpica. Deepeye:
Deep convolutional network for pupil detection in real environments.
Integrated Computer-Aided Engineering, 26(1):85-95, 2019.

O. R. Vincent, O. Folorunso, et al. A descriptive algorithm for sobel
image edge detection. In Proceedings of informing science & IT
education conference (InSITE), vol. 40, pp. 97-107. Informing Science
Institute California, 2009.

P. Wang, X. Bai, M. Billinghurst, S. Zhang, W. He, D. Han, Y. Wang,
H. Min, W. Lan, and S. Han. Using a head pointer or eye gaze: The
effect of gaze on spatial ar remote collaboration for physical tasks.
Interacting with Computers, 32(2):153-169, 2020.

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro.
High-resolution image synthesis and semantic manipulation with con-
ditional gans. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8798-8807, 2018.

Z. Wang, H. Yu, H. Wang, Z. Wang, and F. Lu. Comparing single-
modal and multimodal interaction in an augmented reality system. In
2020 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 165-166. IEEE, 2020.

E. Wood, T. Baltrusaitis, X. Zhang, Y. Sugano, P. Robinson, and
A. Bulling. Rendering of eyes for eye-shape registration and gaze
estimation. In 2015 IEEE International Conference on Computer
Vision, pp. 3756-3764. IEEE Computer Society, 2015.

Z. Wu, S. Rajendran, T. Van As, V. Badrinarayanan, and A. Rabinovich.
Eyenet: A multi-task deep network for off-axis eye gaze estimation. In
2019 IEEE/CVF International Conference on Computer Vision Work-
shop (ICCVW), pp. 3683-3687. IEEE, 2019.

S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of
the IEEE international conference on computer vision, pp. 1395-1403,
2015.

H. Yang, Y. Li, X. Yan, and F. Cao. Contourgan: Image contour detec-
tion with generative adversarial network. Knowledge-Based Systems,
164:21-28, 2019.

Y.-H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. Zu Eu-

[63]

lenburg, and S.-A. Ahmadi. Deepvog: Open-source pupil segmentation
and gaze estimation in neuroscience using deep learning. Journal of
neuroscience methods, 324:108307, 2019.

X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based gaze
estimation in the wild. In /IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4511-4520. IEEE Computer Society, 2015.



	Introduction
	Related Work
	Gaze Interaction in AR
	Near-Eye Image Analysis
	Edge Detection and Semantic Segmentation

	Methodology
	Overview
	Edge Detection
	Edge Extraction Network
	Image Intensity Transfer

	Edge-Guided Segmentation and Fitting Network
	Application
	Implementation Details

	Experiments
	Datasets
	Eye Segmentation and Fitting
	Edge Detection
	Ablation study
	Application

	Conclusion

