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A. Explanation of Hypotheses

Our hypotheses are:
H1: For a given eye (e.g., the dominant eye), the foveation

parameter σ1 for the inner layer remains constant at maximum
rendering speedup, regardless of e1 value.

Our hypothesis suggests that the foveation level of the inner
layer is determined by the eye’s perception of the central visual
field. Since central vision is the most sensitive, it establishes
the limit for foveation parameter σ1. Consequently, we argue
that variations in e1 do not influence the perception of the
central visual field.

H2: For a given eye (e.g., the dominant eye), if e1 is fixed, the
foveation parameter σ2 for the middle layer remains constant
at maximum rendering speedup for any e2 value.

For instance, let e1 and e2 have values of {10◦,20◦} and
{10◦,30◦}, respectively. We assume that the value of σ2
remains constant when achieving the maximum rendering
speedup. The reason is similar to H1 that the eye is more
sensitive to areas near the fixation point compared to peripheral
regions. Consequently, the area in [e1,e2] near the boundary
e1 determines the upper limit of the foveation parameter σ2.
Therefore, regardless of how much e2 is enlarged or reduced,
it will not affect the perception of the middle layer.

B. Main Test

The objective of this study is to determine an optimal set
of parameters that maximizes rendering acceleration while
preserving perceptual quality. Participants first identify their
dominant eye using the Miles Test. In the Main Test, partici-
pants keep both eyes open and the visual content for both eyes
is rendered simultaneously. Measurements of eccentricity and
the σ parameter are conducted sequentially, beginning with
the dominant eye and followed by the non-dominant eye.

Participants are provided with a brief introduction to the
experiment, followed by a warm-up trial to help them famil-
iarize themselves with the tasks. The Main Test lasts approxi-
mately 50 minutes. To prevent visual fatigue, participants are
instructed to close their eyes and rest briefly between each
step.
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Fig. 1: The measurement process for foveation parameters in
two-nested layer images and the construction process for three-
nested layer images (this figure is identical to Figure 7 in the
main paper).

TABLE I: The bisection intervals to measure the σ of the
dominant eye.

Adjusted σ e1 Interval

σd
2 (5) 10 [σd

1 ,6.0]

σd
2 (10) 20 [σd

2 (5),6.0]

σd
2 (15) 30 [σd

2 (10),6.0]

σd
2 (22.5) 45 [σd

2 (15),6.0]

σd
2 (30) 60 [σd

2 (22.5),6.0]

Method for Measuring σ : The measurement of the σ

parameter is conducted using a binary search method. The
interval [l,r] is initially defined, and the midpoint m=(l+r)/2
is applied as the foveation level for the test image. The goal
is to find the highest level of foveation that is perceptually
equivalent to the reference with full-resolution rendering.
Participants use a 5-point Likert scale to rate their perceived
difference between the two images (5: indistinguishable; 1:
highly distinguishable). We iteratively search the σ as follows:

• If the score s ≥ 4, the difference is deemed acceptable,
and σ was refined to the interval [m,r].

• Otherwise, the difference was considered unacceptable,
and σ was refined to the interval [l,m].

This process is repeated until the interval width is less than
a predefined threshold ε , yielding the measured σ .

The visual content of each eye is a two-nested layer image,
as shown in the left of Fig. 1. We record the area whose
eccentricity is less the e1 as the inner region. Otherwise record
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TABLE II: Rendering time and frame rates (in FPS) comparison on UE4 Sun Temple. Evaluated on full-resolution rendering,
2R (DEAMP), 6R (DEAMP), and DEA-FoR (Ours) on binocular screens (1600×1600 per eye).

Procedure (ms) Full-resolution 2R (DEAMP) 6R (DEAMP) DEA-FoR (Ours)
dom n-dom dom n-dom dom n-dom

Depth Pass 0.14 0.13 0.13 0.13 0.13 0.13 0.13
Shadow Pass 0.16 0.13 0.13 0.13 0.13 0.13 0.13
Defer Pass 5.73 4.34 4.35 4.32 4.33 4.35 4.38

Skybox 0.01 0.01 0.01 0.00 0.00 0.00 0.00
Shading/Pass1 24.52 3.23 2.96 3.05 2.63 2.50 2.39

Pass2 / 0.06 0.05 0.05 0.06 0.05 0.06
TAA 0.29 0.23 0.23 0.23 0.23 0.23 0.23
Total 30.85 8.13 7.86 7.91 7.5 7.39 7.32

Binocular Time (ms) 61.70 15.99 15.41 14.71
Fps 16.2 62.5 64.9 68.0

as the outer region.
• Inner Region of the Dominant Eye: The value of σd

1
was determined with an initial binary search interval
[1.0,4.0], with the same σ applied to both eyes during
measurement.

• Outer Region of the Dominant Eye: The boundary
eccentricity e1 of the inner layer is varied through the
set {5◦,10◦,15◦,22.5◦,30◦}. The σ value for the inner
layer is fixed to the previously measured σd

1 , and σ2 for
the outer layer was determined through binary search.
The intervals were defined in Table I.

The experiment utilizes the two-nested layer structures to
measure one σ1 and five σ2 values for the dominant eye,
as shown in Fig. 1. Using these measured σ parameters,
three-nested layer images are constructed. After completing all
measurements for the dominant eye, according to the Equation
(11), we calculate the maximum speedup Sd for each image,
along with its corresponding eccentricity values (ed

1 ,e
d
2).

Next, the parameters for the non-dominant eye are measured
using a similar procedure. During this process, the dominant
eye’s parameters are fixed to the previously measured max-
imum acceptable values. Similarly, the speedup Sn and the
optimal eccentricity values (en

1,e
n
2) for the non-dominant eye

are determined.

C. Validation test results

We conducted a validation test to assess the rationality of
our data collection method. The results are presented in Fig.
2. They indicate no significant differences in speedup between
the two methods (dominant eye: t21 = 0.546, p = 0.591; non-
dominant eye: t21 = 1.031, p = 0.314). This confirms that our
approach of constructing three-nested layers using two-nested
layers is equivalent to directly measuring three-nested layers.

D. Scene Complexity Measurement and Automated Parameter
Selection

This paper distinguished between complex and simple
scenes based on subjective perception. Below, we discuss our
conceptual framework for measuring scene complexity.

Scene complexity can be measured through texture spatial
frequency and geometric complexity. Regarding texture spatial

Fig. 2: The comparison of our data collection method with
the 6L collection method in [1] about the maximum speedup
results for the dominant and non-dominant eyes. The results
show no statistically significant differences between the two
methods.

frequency, high-frequency textures (such as the wooden planks
in scene (a)) contain abundant detail, whereas low-frequency
textures (such as the walls in scene (b) and the road in scene
(c)) are visually simple. Texture complexity can be quantified
by analyzing gradient variations within textures. Regarding
geometric complexity, scene (c) contains numerous straight
lines and regular geometric shapes and is therefore considered
to have low complexity. In contrast, the potted plants in scene
(a) exhibit numerous curves and irregular shapes, resulting in
high complexity. Geometric complexity can be quantified by
analyzing polygon density. Therefore, scene complexity can
be quantified by computing both texture spatial frequency and
geometric complexity metrics.

Regarding optimal parameter selection, we propose an auto-
matic selection scheme. For example, concerning the selection
of foveation parameters for the outermost periphery of the
visual field, we establish correlations between the aforemen-
tioned scene complexity quantification metrics and foveation
parameters through neural networks. By training correspond-
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ing models using collected data, the system can directly output
foveation parameters based on scene complexity during the
testing phase. Other DEA-FoR parameters can be determined
through similar approaches.

E. Additional Rendering Time Evaluation

The data shown in Table II of the main paper was collected
from a single scene (Rendering Resources [2]) under fixed
camera orientation and lighting conditions. Each timing value
represents the average over multiple consecutive frames to
reduce runtime fluctuation and ensure stability.

We also recognize that the performance results presented in
Table II of the main paper may vary across different scenes and
viewpoints. Therefore, we conduct an additional evaluation
using a more complex scene (the Sun Temple scene from
Unreal Engine [3]) under the same experimental conditions.
The results from this scene show similar trends. Our DEA-
FoR method achieves a 4.19× speedup, compared to DEAMP
[1] which achieves a 4.0× speedup, thereby supporting our
conclusions. The updated comparison is included in the Table
II of this document.
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